Théorie cinétique des gaz
- prérequis
- gaz parfaits
- vitesses des molécules
- pression, volume et énergie cinétique en fonction de la température
- mélange de gaz
- gaz réel: formule de Van der Waals
Prérequis
Gaz parfaits
3 conditions :
- taille des molécules telle qu'on peut les considérer comme des points géométriques,
- molécules indépendantes les unes des autres,
- chocs entre les molécules parfaitement élastiques
Vitesses des molécules
vitesse la plus probable : |
distribution selon la loi de Maxwell-Boltzmann ⇒![]() |
énergie cinétique totale :
pression :
Pression et volume en fonction de la température :
1) A température constanteloi de Boyle-Mariotte : P . V = cste |
![]() |
2) Effets de la chaleur sur les gaz
loi de Gay-Lussac : à V cst,loi de Charles : à P cste,
loi des gaz parfaits : P . V = n . R . T
où- T0 = 273 K, P0 = 1 atm, V0 = 22,4 l,
- R = cste des gaz parfaits = 0,082 l.atm/mol.K = 8,31 J/mol.K = 1,98 cal/mol.K
Energie cinétique d'une mole :
- Energie cinétique d'une molécule :
- où k = cste de Boltzmann
- et N = nbre d'Avogadro = 6 . 1023
Mélange de gaz
Soit un gaz i d'un mélange, caractérisé par son nombre de moles ni, son volume partiel Vi, sa pression partielle Pi.
Pour le mélange, n = ∑ ni
On définit :
Et on montre les relations suivantes :
- P = ∑ Pi ,V = ∑ Vi
Formule de van der Waals
gaz réel ⇒molécules non ponctuelles ⇒ volume disponible plus petit
pas indépendantes : force d'attraction de van der Waals entre les molécules du gaz ⇒ pression diminuée
pas indépendantes : force d'attraction de van der Waals entre les molécules du gaz ⇒ pression diminuée
⇒ la loi des gaz parfaits doit être modifiée :
gaz parfait | gaz réel |
---|---|
(= formule de van der Waals) |
b est le volume occupé par les autres molécules, appelé covolume.