Mark Reed, Pr., IEEE Distinguished Lecturer, Associate Director of the Yale Institute for Nanoscience and Quantum Engineering, Yale University, New Haven, USA.
Integrated Electronic Label-Free Biosensing Assays
Nanoscale electronic devices have the potential to achieve exquisite sensitivity as sensors for the direct detection of molecular interactions, thereby decreasing diagnostics costs and enabling previously impossible sensing in disparate field environments. Semiconducting nanowire-field effect transistors (NW-FETs) hold particular promise, though contemporary NW approaches are inadequate for realistic applications and integrated assays. We present here an integrated nanodevice biosensor approach [1] that is compatible with CMOS technology, has achieved unprecedented sensitivity, and simultaneously facilitates system-scale integration of nanosensors. These approaches enable a wide range of label-free biochemical and macromolecule sensing applications, such as specific protein and complementary DNA recognition assays, and specific macromolecule interactions at femtomolar concentrations. Critical limitations of nanowire sensors are the Debye screening limitation [3], and the lack of internal calibration for analyte quantification, which has prevented their use in clinical applications and physiologically relevant solutions. We will present approaches that solves this longstanding problems, which demonstrates the detection at clinically important concentrations of biomarkers from whole blood samples [4], and quantitative integrated assays of cancer biomarkers [5]. [1] Nature, 445, 519 (2007) [2] Elect. Dev. Lett. 31, 615 (2010) [3] Nano Lett. 7, 3405 (2007) [4] Nature Nanotech. 5, 138 (2010) [5] Biosens. Bioelectron. 28, 239 (2011).
The conference will be held on the 16th January at 14:30 in the EPL buildings (BARB 92 lecture hall, place Sainte-Barbe, Louvain-la-Neuve). Drinks and appetizers will be served after the presentation and question-and-answer session.
Prof. Mark A. Reed received his Ph.D. in Physics from Syracuse University in 1983, after which he joined Texas Instruments. In 1990 Mark joined Yale University where he holds the Harold Hodgkinson Chair of Engineering and Applied Science. He was chairman of the Department of Electrical Engineering from 1995 to 2001. He is presently the Associate Director of the Yale Institute for Nanoscience and Quantum Engineering. Mark’s research activities have included the investigation of electronic transport in nanoscale and mesoscopic systems, artificially structured materials and devices, molecular scale electronic transport, plasmonic transport in nanostructures, and chem/bio nanosensors. Mark is the author of more than 180 professional publications and 6 books, has given over 20 plenary and over 300 invited talks, and holds 25 U.S. and foreign patents on quantum effect, heterojunction, and molecular devices. He is the Editor in Chief of the journal Nanotechnology, an Editor for IEEE Transactions Electron Devices, and holds numerous other editorial and advisory board positions. Mark has been elected to the Connecticut Academy of Science and Engineering and Who’s Who in the World. His awards include; Fortune Magazine “Most Promising Young Scientist” (1990), the Kilby Young Innovator Award (1994), the Fujitsu ISCS Quantum Device Award (2001), the Yale Science and Engineering Association Award for Advancement of Basic and Applied Science (2002), Fellow of the American Physical Society (2003), the IEEE Pioneer Award in Nanotechnology (2007), and Fellow of the Institute of Electrical and Electronics Engineers (2009). More information on his Research Lab website.