Elective courses available for Master students in Data Sciences Engineering

 
> Légende
Mandatory Optional
Course not taught in 2020-2021 Periodic course not taught in 2020-2021
Periodic course taught in 2020-2021 Activity with prerequisites
Click on the course title to see detailed informations (objectives, teaching methods, evaluation...)
The elective courses being recommended and available for Master students in Data Sciences Engineering are listed here above, in the majors and other lists of elective courses. However, a student can further suggest other courses that would be relevant for his.her personal curriculum, pending that this is compliant with the rules for setting up a personal Master program.
Annual unit
  1 2

Mandatory Content:
Optional Statistics
Optional LSTAT2200 Survey and Sampling   Marie-Paule Kestemont
15h+5h  4 credits q2 x x
Optional LSTAT2380 Statistical consulting   Christian Ritter
30h  5 credits q1+q2 x x
Optional LSTAT2390 Applied statistics workshops   Catherine Legrand
, Christian Ritter
15h  3 credits q1+q2 x x
Optional LSTAT2150 Nonparametric statistics: smoothings methods   Rainer von Sachs
15h+5h  4 credits q1 x x
Optional Machine learning, vision and artificial intelligence
Optional LELEC2885 Image processing and computer vision   Christophe De Vleeschouwer (coord.)
, Laurent Jacques
30h+30h  5 credits q1 x x
Optional LGBIO2010 Bioinformatics   Pierre Dupont
30h+30h  5 credits q1 x x
Optional LINGI2263 Computational Linguistics   Pierre Dupont
, Pierre Dupont (compensates Cédrick Fairon)
,
30h+15h  5 credits q1 x x
Optional LINGI2348 Information theory and coding   Jérôme Louveaux
, Benoît Macq
, Olivier Pereira
30h+15h  5 credits q2 x x
Optional LINGI2369 Artificial intelligence and machine learning seminar   Pierre Dupont
, Siegfried Nijssen
30h  3 credits q1 x x
Optional Data structures and algorithms for data analysis
Optional LSINF2345 Languages and algorithms for distributed Applications   Peter Van Roy
30h+15h  5 credits q1 x x
Optional LELEC2770 Privacy Enhancing technology   Olivier Pereira (coord.)
, François-Xavier Standaert
30h+30h  5 credits q1 x x