The Master in Agricultural Bioengineering with a professional focus is designed to train bioengineers in the field of agronomic science and technology : animal and plant production, plant improvement and protection, animal improvement, quality of food and health products, biotechnology, environmental impact of agriculture, land management, rural socio-economics, industry, management etc.
The programme is designed to train future bioengineers to become :
-
professionals able to tackle and diagnose agronomic problems : production and quality, production systems and industries, protection and development of resources, impact etc.
-
scientists able to understand complex processes on different scales, used to multidisciplinary approaches and consultation with other specialists
-
innovators able to design new kinds of production and management, new processes in response to many major challenges : feeding the world, bringing together food and health and reconciling agriculture with environment.
Training provides students with :
-
knowledge in the field of agronomic sciences (plant and animal sciences, applied ecology, biochemistry of nutrition, ecophysiology, systems analysis, sociology and rural economics, food science etc.) ;
-
technical skill in agronomic sciences and bioengineering (cultural and agro-environmental diagnosis, agri-food, biotechnology, biometrics and data analysis, modelling, support for decision-taking, analysis of production industries, improvement techniques, design of new technical routes in plant and animal production, phytotechnics and zootechnics) and integrated analysis (project management, systems analysis).
Strongly multidisciplinary in character, the training focuses on acquiring skills which combine the theory and techniques of bioengineering. There is special emphasis on the mechanistic study of processes, the design and implementation of procedures (e.g. biotechnology, technical routes, development of resources), systems analysis, impact assessment, multisource data fusion and support for decision-taking.
On successful completion of this programme, each student is able to :
1. de maîtriser de manière intégrée un corpus de « Savoirs scientifiques » pluridisciplinaires sur lequel il s’appuie pour agir avec expertise dans le domaine des sciences et des technologies agronomiques
1.1 Connaître et comprendre un socle de savoirs approfondis dans le domaine des sciences agronomiques et plus spécifiquement pour les disciplines suivantes :
- Sciences du végétal et de l’animal
- Système agraire
- Politique agricole et rurale
- Biotechnologie
1.2 Connaître et comprendre des savoirs scientifiques hautement spécialisés dans l’une des spécialisations de la bioingénierie suivantes :
- Sciences, technologie et qualité des aliments
- Agronomie intégrée
- Protection intégrée des plantes
- Ressources en eau et en sol
- Analyse et gestion de l’information en ingénierie agronomique
- Développement et production agricole en zone tropicale
1.3 Maîtriser des savoirs-faire procéduraux dans la réalisation d’expériences : techniques de biologie moléculaire, planification expérimentale, biométrie et
analyse des données ainsi que des techniques spécifiques en continuité avec ses choix de spécialisation
1.4 Mobiliser ses savoirs de manière critique face à un problème complexe d’agronomie et cela du moléculaire à l’agro-écosystème.
1.5 Mobiliser des savoirs multiples pour résoudre un problème multidisciplinaire d’agronomie en vue de développer des solutions pertinentes et originales.
2. de maîtriser de manière intégrée un corpus de « Savoirs en ingénierie et gestion » sur lequel il s’appuie pour agir avec expertise dans le domaine des sciences et des technologies agronomiques.
2.1 Connaître et comprendre un socle de savoirs approfondis (p.ex. : concepts, lois, technologies) et d’outils (p.ex., modélisation, programmation) en Sciences de l’ingénieur :
- Biotechnologie appliquée
- Biométrie
- Production animale et végétale
- Gestion et analyse des systèmes de production et de transformation
- Gestion agricole et aide à la décision
- Génie des procédés
2.2 Connaître et comprendre des savoirs et outils hautement spécialisés dans l’une des spécialisations de la bioingénierie suivantes :
- Technologie et qualité des aliments
- Agronomie intégrée
- Protection intégrée des plantes
- Ressources en eau et en sol
- Economie agricole et des ressources naturelles
- Analyse et gestion de l’information en ingénierie agronomique
- Développement et production agricole en zone tropicale
2.3 Maîtriser de manière opérationnelle des outils spécialisés en Sciences de l’ingénieur (p.ex.: analyse système, analyse statistique, programmation, modélisation,…) :
- planification expérimentale
- réalisation d’enquêtes
- Outils spécifiques en continuité avec ses choix de spécialisation
2.4 Activer et mobiliser ses savoirs en ingénierie avec un esprit critique et selon une approche quantitative, face à un problème complexe d’agronomie et cela du moléculaire à l’agro-écosystème.
2.5 Situer et comprendre le fonctionnement des entreprises et des organisations, y compris le rôle des différents acteurs, dans leurs réalités et responsabilités économiques et sociales et discerner les enjeux et contraintes qui caractérisent leur environnement.
3. de concevoir et réaliser un travail de recherche, mettant en œuvre une démarche scientifique analytique et, le cas échéant systémique, pour approfondir une problématique de recherche inédite relevant de son domaine de spécialisation, intégrant plusieurs disciplines.
Cet axe de compétence se développe tout au long des 5 années. Il demande, entre autres, de mobiliser une succession de compétences qui sont explicitées ci-dessous. Ces compétences correspondent dans les faits aux différentes étapes de la démarche scientifique.
La majorité de ces compétences sont développées dans les programmes de bachelier et de master avec une différenciation principalement à 3 niveaux :
- la complexité et le degré d’approfondissement de la problématique scientifique/de recherche étudiée
- le degré d’innovation dont fait preuve l’étudiant
- le degré d’autonomie dont fait preuve l’étudiant tout au long de la démarche.
3.1 Résumer un état des connaissances sur une problématique de recherche complexe qui est en continuité avec ses choix de spécialisation : rechercher des informations, les sélectionner et valider leur fiabilité sur base de la nature de la source d’information et en comparant plusieurs sources.
3.2 Préciser et définir la question de recherche.
3.3 Réfléchir à la question de recherche en faisant preuve d’abstraction concep-tuelle, et formuler des hypothèses.
3.4 Élaborer et mettre en œuvre une méthodologie rigoureuse permettant de répondre à la question de recherche.
3.5 Maîtriser et mobiliser des outils d’analyse statistique de données scientifiques dans le cadre d’une problématique scientifique complexe.
3.6 Analyser et interpréter les résultats jusqu’à la critique argumentée, pour une problématique scientifique complexe.
3.7 Faire preuve d’un esprit de synthèse et formuler des conclusions, pour une problématique scientifique complexe.
3.8 Dans chacune des compétences reprises ci-dessus, faire preuve de la rigueur, de la précision et de l’esprit critique indispensables à toute démarche scientifique.
3.9 Dans au moins une des compétences reprises ci-dessus, faire preuve d’innovation.
4. de formuler et de résoudre une problématique complexe d’ingénierie agronomique*, liée à des situations nouvelles présentant un certain degré d’incertitude ainsi que de concevoir des solutions pertinentes, durables et innovantes par une approche systémique et multidisciplinaire.
*Les problématiques ont trait à la production agricole et la qualité des produits, aux systèmes de production agronomiques et aux filières, et à la transformation de produits agricoles, en intégrant les aspects scientifiques, économiques et sociologiques.
4.1 Distinguer de manière stratégique les éléments clé des éléments moins critiques relatifs à une problématique complexe d’ingénierie agronomique, afin de définir et de délimiter le domaine d’action de cette problématique.
4.2 Identifier les connaissances acquises et celles à acquérir pour résoudre la problématique complexe d’ingénierie agronomique.
4.3 Analyser selon une approche systémique et multidisciplinaire une problématique complexe d’ingénierie agronomique afin de poser un diagnostic et formuler le cahier des charges.
4.4 Faire preuve d’une capacité d’abstraction conceptuelle et de formalisation dans l’analyse et la résolution de la problématique complexe d’ingénierie agronomique.
4.5 Concevoir des solutions scientifiques et technologiques pertinentes et innovantes, par une approche pluridisciplinaire (intégration et articulation entre des savoirs) et quantitative, permettant d’élaborer des produits, systèmes, procédés ou services dans le domaine des sciences agronomiques.
4.6 Tester les solutions et évaluer leurs impacts en regard d’un contexte économique, environnemental, sociétal et culturel.
4.7 Formuler des recommandations concrètes et responsables dans une perspective de développement durable quant à la mise en œuvre efficiente, opérationnelle et durable des solutions proposées.
5. de concevoir et mener un projet pluridisciplinaire, seul et en équipe, avec les acteurs concernésen tenant compte des objectifs et en intègrant les composantes scientifiques, techniques, environnementales, économiques et humaines (qui le caractérisent).
Le diplômé devant être capable de mener un projet seul et en équipe, les compétences reprises ci-dessous sont explicitées dans le cadre du master, au travers de projets abordés non seulement dans leurs dimensions scientifique et technologique mais aussi économique et, le cas échéant, sociale, et avec un degré de complexité représentatif de cas emblématiques du milieu professionnel.
5.1 Connaître et comprendre les principes et les facteurs des dynamiques de groupes (y compris le rôle constructif du conflit).
5.2 Connaître et comprendre les processus de gestion de projet (cycles de projet) : formulation et définition de projet, gestion de projet, suivi et évaluation de projet.
5.3 Cadrer un projet pluridisciplinaire dans son environnement, en identifier les enjeux, les contraintes et les acteurs, et définir clairement ses objectifs.
5.4 Planifier et élaborer, seul et en équipe, toutes les étapes d’un projet pluridisciplinaire et s’y engager collectivement après avoir réparti les tâches.
5.5 Intégrer les acteurs clés, aux moments opportuns, dans le processus.
5.6 S’intégrer au sein d’une équipe et participer à sa dynamique (collaborer) en vue d’atteindre de manière efficace les objectifs communs.
5.7 Prendre et assumer, seul et en équipe, les décisions nécessaires à une gestion efficace du projet afin d’atteindre les objectifs visés.
5.8 Reconnaître et prendre en considération la diversité des points de vue et modes de pensée des membres d’une équipe et gérer de manière constructive les conflits pour œuvrer vers une décision consensuelle.
5.9 Mener une équipe (faire preuve de leadership) : motiver les membres d’une équipe, installer un climat collaboratif, guider pour coopérer à la réalisation d’un objectif commun, gérer les conflits
6. de communiquer, de dialoguer et de convaincre, en français et en anglais (niveau C1), de manière professionnelle, tant à l’oral qu’à l’écrit, en s’adaptant à ses interlocuteurs et au contexte.
6.1 Comprendre et exploiter des articles scientifiques et documents techniques avancés, en français et en anglais.
6.2 Communiquer, des informations, des idées, des solutions, et des conclusions ainsi que les connaissances et principes sous-jacents, de façon claire, structurée, argumentée, concise ou exhaustive (selon le cas), tant à l’oral qu’à l’écrit, selon les standards de communication spécifiques au contexte et en adaptant sa présentation en fonction du niveau d’expertise de ses interlocuteurs.
6.3 Elaborer des schémas logiques pour poser une problématique complexe de façon synthétique.
6.4 Communiquer de manière synthétique et critique l’état des connaissances dans un domaine spécifique.
6.5 Communiquer des résultats et conclusions, et appuyer un message, de manière pertinente à l’aide de tableaux, graphiques et schémas scientifiques.
6.6 Dialoguer de façon efficace et respectueuse avec des interlocuteurs variés en faisant preuve de capacité d’écoute, d’empathie et d’assertivité.
6.7 Argumenter et convaincre : comprendre les points de vue d’interlocuteurs variés et faire valoir ses arguments en conséquence.
6.8 Maîtriser les outils informatiques et les technologies indispensables à une communication professionnelle.
6.9 Maitriser l’anglais au niveau C1 selon les standards européens
7. d’agir en acteur critique et responsable, plaçant les enjeux globaux du développement durable au cœur de ses préoccupations en inscrivant ses actions dans une perspective humaniste.
7.1 Faire preuve d’indépendance intellectuelle dans la réflexion, porter un regard critique sur les savoirs et sur les pratiques professionnelles et leurs évolutions.
7.2 Décider et agir en société avec déontologie en intégrant des valeurs éthiques, le respect des lois et des conventions.
7.3 Décider et agir de manière responsable en intégrant des valeurs de développement durable.
7.4 Décider et agir en intégrant des valeurs humanistes, d’ouverture culturelle et de solidarité, notamment dans les relations Nord-Sud.
7.5 Endosser des responsabilités professionnelles pour agir en tant que cadre responsable vis-à-vis de ses collaborateurs.
La plupart des compétences de cet axe se développent non de manière exclusive à travers certaines activités spécifiques, mais bien à travers de multiples et diverses situations vécues tout au long du parcours de formations, de par le programme de formation et son organisation ainsi que le cadre universitaire offert aux étudiants.
8. de faire preuve d’autonomie et de proactivité dans l’acquisition de nouveaux savoirs et le développement de nouvelles compétences afin de pouvoir s’adapter à des contextes changeants ou incertains et y évoluer positivement. Il se sera construit un projet professionnel et aura également intégré une logique de développement continu.
8.1 Gérer de façon autonome son travail : définir les priorités, anticiper et planifier l’ensemble de ses activités dans le temps, y compris dans un contexte changeant, incertain ou d’urgence.
8.2 Gérer son stress et ses frustrations face à des situations d’urgence, changeantes, incohérentes ou incertaines.
8.3 Se remettre en question et se connaître : s’auto-évaluer, par une analyse de ses erreurs et réussites, identifier ses forces et ses faiblesses et son fonctionnement personnel, en regard du contexte.
8.4 Se développer en tant que personne et en tant que professionnel : se construire un projet professionnel en phase avec ses propres valeurs et ses aspirations, gérer sa motivation et son implication dans la concrétisation de ce projet, persévérer dans des situations complexes.
8.5 Identifier et intégrer, de manière autonome, les nouvelles connaissances et compétences indispensables pour appréhender rapidement de nouveaux contextes.
8.6 Intégrer une logique d’apprentissage et de développement continus (« lifelong learning ») indispensable pour évoluer positivement dans son environnement social et professionnel.
|