Note du 29 juin 2020
Sans connaitre encore le temps que dureront les mesures de distances sociales liées à la pandémie de Covid-19, et quels que soient les changements qui ont dû être opérés dans l’évaluation de la session de juin 2020 par rapport à ce que prévoit la présente fiche descriptive, de nouvelles modalités d’évaluation des unités d’enseignement peuvent encore être adoptées par l’enseignant ; des précisions sur ces modalités ont été -ou seront-communiquées par les enseignant·es aux étudiant·es dans les plus brefs délais.
Sans connaitre encore le temps que dureront les mesures de distances sociales liées à la pandémie de Covid-19, et quels que soient les changements qui ont dû être opérés dans l’évaluation de la session de juin 2020 par rapport à ce que prévoit la présente fiche descriptive, de nouvelles modalités d’évaluation des unités d’enseignement peuvent encore être adoptées par l’enseignant ; des précisions sur ces modalités ont été -ou seront-communiquées par les enseignant·es aux étudiant·es dans les plus brefs délais.
5 crédits
30.0 h + 20.0 h
Q2
Enseignants
Buysse Martin; Dos Santos Santana Forte Vaz Pedro;
Langue
d'enseignement
d'enseignement
Français
Préalables
Le(s) prérequis de cette Unité d’enseignement (UE) sont précisés à la fin de cette fiche, en regard des programmes/formations qui proposent cette UE.
Thèmes abordés
2. Cahier des charges 1. La géométrie euclidienne et ses extensions : les courbes (courbure, torsion, courbes particulières), les surfaces (courbures, surfaces réglées), les volumes particuliers (polyèdres réguliers, géométrie convexe, intersection de volumes). 2. La géométrie euclidienne et ses prolongements projectifs (structure de l'espace perspectif, transformations projectives, rapports anharmoniques). 3. Géométrie et topologie ; ouverture aux autres formes de la géométrie : les géométries non-euclidiennes et l'axiome des parallèles, la théorie topologique des surfaces (exemples particuliers comme la Bouteille de Klein, classification, orientation, caractéristique d'Euler), la géométrie hyperbolique (construction de pavages classiques et pavages à la Escher). 4. Les formes et les nombres de la nature : nombre d'or et nombres de Fibonacci (propriétés et justification de leur intérêt géométrique), les objets fractals (constructions élémentaires , dimension fractale)
Acquis
d'apprentissage
d'apprentissage
A la fin de cette unité d’enseignement, l’étudiant est capable de : | |
1 | 1. disposeront des ressources mathématiques techniques suffisantes pour les calculs liés à la géométrie de l'espace, (mesures des longueurs, aires volumes et angles, ...) 2. disposeront des ressources mathématiques suffisantes pour visualiser et imaginer les espaces à construire. |
La contribution de cette UE au développement et à la maîtrise des compétences et acquis du (des) programme(s) est accessible à la fin de cette fiche, dans la partie « Programmes/formations proposant cette unité d’enseignement (UE) ».
Contenu
Le cours abordera dans l'ordre les chapitres suivants
- géométrie euclidienne
- géométrie affine
- géométrie projective
- théorie métrique des courbes
- théorie métrique des surfaces
- topologie des surfaces
- géométrie axiomatique
- géométrie fractale
Autres infos
FSAB 1101 ou cours équivalent
FSAB 1102 ou cours équivalent
Faculté ou entité
en charge
en charge
LOCI