Aims
The course presents the fundamental notions of differential geometry. It serves as a basis to other course of geometry in the masters' years of mathematical sciences.
Main themes
The course contains three parts:
1: A description of the basic objects of geometry: manifolds, fiber bundles, vector fields, differential forms, Lie bracket, differential of an application, immersion, submersion. Various examples: Lie groups, homogeneous spaces, projective spaces and Grassmannian manifolds.
2: A presentation of the basic elements of Riemann geometry: parallel transport, particular case of surfaces, curves, geodesics, etc.
3: Applications to mechanics and an overview of important theorems of geometry; Arnold-Liouville, tores geometry, Hamilton mechanics, etc.
Other information (prerequisite, evaluation (assessment methods), course materials recommended readings, ...)
Reference: Do Carmo M., Differentiable curves and surfaces, Prentice Hall, 1976.
Other credits in programs
MAP21
|
Première année du programme conduisant au grade d'ingénieur civil en mathématiques appliquées
|
(5 credits)
| |
MAP22
|
Deuxième année du programme conduisant au grade d'ingénieur civil en mathématiques appliquées
|
(5 credits)
| |
MATH21/E
|
Première licence en sciences mathématiques (Economie mathématique)
|
(5 credits)
|
Mandatory
|
MATH21/G
|
Première licence en sciences mathématiques (Général)
|
(5 credits)
|
Mandatory
|
MATH21/S
|
Première licence en sciences mathématiques (Statistique)
|
(5 credits)
|
Mandatory
|
|