Aims
The course constitutes an introduction to convex analysis and to the calculation of variations.
Main themes
- the direct method of calculus of variations, minimisation of multiple integrals, free and constrained problems, lack of compactness.
- Necessary conditions and sufficient conditions, Euler-Lagrange equations.
- Optimal solution symmetry, symmetry breaking, Noether theory.
Other information (prerequisite, evaluation (assessment methods), course materials recommended readings, ...)
Prerequisites: functional analyse (MATH 2110).
Evaluation: quarterly written examination.
References:
- M. Willem, Analyse harmonique réelle, Hermann, Paris, 1996.
- M. Willem, Minimax theorems, Birkhauser, 1995.
- M. Willem, book in preparation.
Other credits in programs
MATH22/E
|
Deuxième licence en sciences mathématiques (Economie mathématique)
|
(3 credits)
|
Mandatory
|
MATH22/G
|
Deuxième licence en sciences mathématiques
|
(3 credits)
| |
|