Aims
To introduce the student to the major methods for study of elliptic partial differential equations and to the corresponding Dirichlet problem.
![](../../images/fsa/ligne.gif)
Main themes
Methods of potential theory and Hilbert space methods.
![](../../images/fsa/ligne.gif)
Content and teaching methods
Methods of potential theory :
- Laplace equation - harmonic functions
- Dirichlet problem for the Laplacian operator on a ball
- Dirichlet problem for the Laplacian operator on a bounded domain
- Maximum principle for elliptic second order operators
Hilbert space methods :
- Generalized derivatives, Sobolev spaces, Lax-Milgram lemma
- Non-homogeneous Dirichlet problem for elliptic second order operators
![](../../images/fsa/ligne.gif)
Other information (prerequisite, evaluation (assessment methods), course materials recommended readings, ...)
The course INMA 2315 is a mandatory prerequisite. The courses MATH 2111 " Functional analysis " and INMA 2325 " Ordinary differential equations " will be quite helpful.
![](../../images/fsa/ligne.gif)
Other credits in programs
MAP22
|
Deuxième année du programme conduisant au grade d'ingénieur civil en mathématiques appliquées
|
(3 credits)
| |
MAP23
|
Troisième année du programme conduisant au grade d'ingénieur civil en mathématiques appliquées
|
(3 credits)
| |
MATH22/G
|
Deuxième licence en sciences mathématiques
|
(3 credits)
| |
![](../../images/fsa/ligne.gif)
|