UCL - Etudes

Formations
Premier cycle
Deuxième cycle
Troisième cycle
Certificats (programmes non académiques)
Passerelles
Formation continue
Facultés et entités
Cadre académique
Réforme de Bologne
Accès aux études
Organisation des études
Lexique
Calendrier académique
Règlement des études et examens
Charte pédagogique
Renseignements généraux

Mathématiques discrètes : bases logiques de l'informatique [INGI2101]
[30h+15h exercises] 4 credits

Version française

Printable version

This course is taught in the 1st semester

Teacher(s):

Philippe Delsarte, Axel Van Lamsweerde (coord.)

Language:

french

Level:

2nd cycle course

>> Aims
>> Main themes
>> Content and teaching methods
>> Other information (prerequisite, evaluation (assessment methods), course materials recommended readings, ...)
>> Other credits in programs

Aims

- To acquire the mathematical foundations of a variety of concepts and techniques used in computing science.

- To make the appropriate connections between such foundations and various application domains in programming, data structures, artificial intelligence, software engineering, databases, robotics, etc.).

- To apply rigorous approaches for formalizing structures found in computing science and for reasoning about such structures.

Main themes

- Introduction to mathematical logic: propositional logic, predicate logic; first-order theories.

- Reasoning mechanisms: resolution, rewriting, induction on well-founded sets.

- Discrete structures as first-order theories: equality, partial orders, lattices; nonnegative integers, tuples, lists, trees, sets, multisets, sequences, etc.

Content and teaching methods

- Preliminaries: sets, relations, and functions; formal systems.

- Mathematical logic: proposition calculus -- syntax, semantics, proof theory; first-order predicate calculus -- syntax, semantics, proof theory ; resolution and refutation; first-order theories --models, consistency, inclusion, extension, etc.

- Equational theories: equality, partial orders, lattices, groups.

- Inductive theories: well-founded relations and the general induction principle. Basic inductive theories : nonnegative integers, tuples, lists, trees, sets, multisets, sequences, etc. Structure generators, systematic construction of axiomatisations, and inductive proofs of typical properties according to various induction rules (recurrence, complete induction, etc.).

Applications to various domains : program verification, specification of abstract data types, automated reasoning, expert systems, robotics, databases, parsing, etc.

Implementation with declarative programming languages such as PROLOG or ML.

Other information (prerequisite, evaluation (assessment methods), course materials recommended readings, ...)

- Weekly exercise sessions require students to come prepared and be actively involved -questions/answers, and resolution, by small groups, of problems submitted during the previous week. Quizzes are organized regularly to make sure that students follow and work properly.

- Prerequisite:
Elementary maths (assumed to be acquired after the first two bachelor years).

- References:
(1) Course lecture notes (available at " SICI ").

(2) Z. Manna and R. Waldinger, The Deductive Foundations of Computer Programming, Addison-Wesley, 1993.

(3) D. Gries, F. Schneider, A Logical Approach to Discrete Mathematics, Springer-Verlag, 1994.

- Evaluation :
Quizzes throughout the quadrimester, and written exam at the end.

Other credits in programs

INFO21

Première année du programme conduisant au grade d'ingénieur civil informaticien

(4 credits)

Mandatory

INFO22

Deuxième année du programme conduisant au grade d'ingénieur civil informaticien

(4 credits)

LINF21

Première licence en informatique

(4 credits)

LINF21/GN

Première licence en informatique (informatique générale)

(4 credits)

Mandatory

LINF21/GS

Première licence en informatique (informatique de gestion)

(4 credits)

Mandatory

LINF22/GS

Deuxième licence en informatique (informatique de gestion)

(4 credits)

MAP21

Première année du programme conduisant au grade d'ingénieur civil en mathématiques appliquées

(4 credits)

MATH21/G

Première licence en sciences mathématiques (Général)

(4 credits)



Ce site a été conçu en collaboration avec ADCP, ADEF, CIO et SGSI
Responsable : Jean-Louis Marchand - Contact : secretaire@fsa.ucl.ac.be
Dernière mise à jour : 25/05/2005