UCL Faculté des sciences appliquées

FSA

INGI2101

Mathématiques discrètes : bases logiques de l'informatique

[30h+15h exercises] 4 credits

This course is taught in the 1st semester

Teacher(s):	Philippe Delsarte, Axel Van Lamsweerde (coord.)
Language:	french
Level:	2nd cycle course

Aims

- To acquire the mathematical foundations of a variety of concepts and techniques used in computing science.

- To make the appropriate connections between such foundations and various application domains in programming, data structures, artificial intelligence, software engineering, databases, robotics, etc.).

- To apply rigorous approaches for formalizing structures found in computing science and for reasoning about such structures.

Main themes

- Introduction to mathematical logic: propositional logic, predicate logic; first-order theories.

- Reasoning mechanisms: resolution, rewriting, induction on well-founded sets.

- Discrete structures as first-order theories: equality, partial orders, lattices; nonnegative integers, tuples, lists, trees, sets, multisets, sequences, etc.

Content and teaching methods

- Preliminaries: sets, relations, and functions; formal systems.

Mathematical logic: proposition calculus -- syntax, semantics, proof theory; first-order predicate calculus -- syntax, semantics, proof theory; resolution and refutation; first-order theories --models, consistency, inclusion, extension, etc.
Equational theories: equality, partial orders, lattices, groups.

- Inductive theories: well-founded relations and the general induction principle. Basic inductive theories : nonnegative integers, tuples, lists, trees, sets, multisets, sequences, etc. Structure generators, systematic construction of axiomatisations, and inductive proofs of typical properties according to various induction rules (recurrence, complete induction, etc.). Applications to various domains : program verification, specification of abstract data types, automated reasoning, expert

systems, robotics, databases, parsing, etc.

Implementation with declarative programming languages such as PROLOG or ML.

Other information (prerequisite, evaluation (assessment methods), course materials recommended readings, ...)

- Weekly exercise sessions require students to come prepared and be actively involved -questions/answers, and resolution, by small groups, of problems submitted during the previous week. Quizzes are organized regularly to make sure that students follow and work properly.

- Prerequisite:

Elementary maths (assumed to be acquired after the first two bachelor years).

- References:

(1) Course lecture notes (available at " SICI ").

(2) Z. Manna and R. Waldinger, The Deductive Foundations of Computer Programming, Addison-Wesley, 1993.

(3) D. Gries, F. Schneider, A Logical Approach to Discrete Mathematics, Springer-Verlag, 1994.

- Evaluation :

Quizzes throughout the quadrimester, and written exam at the end.

Other credits in programs

INFO21	Première année du programme conduisant au grade d'ingénieur civil informaticien	r (4 credits)	Mandatory
INFO22	Deuxième année du programme conduisant au grade d'ingénieur civil informaticien	(4 credits)	
LINF21	Première licence en informatique	(4 credits)	
LINF21/GN	Première licence en informatique (informatique générale)	(4 credits)	Mandatory
LINF21/GS	Première licence en informatique (informatique de gestion)	(4 credits)	Mandatory
LINF22/GS	Deuxième licence en informatique (informatique de gestion)	(4 credits)	-
MAP21	Première année du programme conduisant au grade d'ingénieur civil en mathématiques appliquées	r (4 credits)	
MATH21/G	Première licence en sciences mathématiques (Général)	(4 credits)	