e-Learning in electrical engineering

Outil de recherche | Principes de navigation
Conversion électromagnétique Machine à champ tournant Machine synchrone Machine asynchrone Testez vos connaissances

5. Loi d'Hopkinson

Si le rayon Ri et le rayon Re du tore sont de valeur voisines (c'est-à-dire si les dimensions des spires sont faibles devant le rayon moyen (Rm = (Ri+Re)/2)), on peut admettre, sans commettre d'erreur importante, que tous les contours d'intégration situés à l'intérieur du tore ont plus ou moins la même longueur égal à Rm.

Cette hypothèse revient à admettre que l'induction magnétique est constante en tout point d'une section droite du tore. Comme par ailleurs, l'induction est en tout point perpendiculaire à la section droite (puisque tangente au contours d'intégration), le flux y à travers une section droite du tore vaut approximativement :
     integral  integral 
y =    B.dS = B.S,
      S
(4)
S est la section droite du tore.

En combinant (2) et (4), on calcule

y = m.S .N.I,
      l
(5)
avec l = 2.p.Rm

On appelle :

  • F = N.I la force magnétomotrice F qui s'exprime en Ampère-tours (At) ;
  • R = ml.S, la réluctance du circuit magnétique.

ce qui permet d'écrire (5) sous la forme :
F = R.y.
(6)
Cette équation est encore connue sous le nom de loi d'Hopkinson.

 

Responsable : Damien Grenier| Réalisation : Sophie Labrique | © e-lee.net