Due to the COVID19 crisis, the information below is subject to change,
in particular that concerning the teaching mode (presential, distance or in a comodal or hybrid format).
6 credits
30.0 h + 30.0 h
Q1
Teacher(s)
Quertenmont Loïc;
Language
French
Prerequisites
The prerequisite(s) for this Teaching Unit (Unité d’enseignement – UE) for the programmes/courses that offer this Teaching Unit are specified at the end of this sheet.
Main themes
 Representation of floating point numbers
 rounding error problem and error propagation (discussion for the methods below).
 Notion of convergence and stopping criteria of iterative methods
 Representation of matrices, efficient multiplication of matrices
 Resolution of linear systems, including iterative methods
 Interpolations and regressions
 Numerical integration, numerical differentiation
 Resolution of ordinary differential equations: problems with initial value
 Resolution of nonlinear equations (function roots), application to simple onedimensional optimization problems (including notion of minimum / maximum local or global)
Since the course is intended for IT professionals, the emphasis will be on practical implementation of these methods.
Applications and examples will be taken preferably in the other courses of the program SINF1BA (economics, electronic basics for computer science, for example). Otherwise, they will be taken in other domains (mechanical, for example) but the teacher will take care to introduce the relevant concepts.
Aims
At the end of this learning unit, the student is able to :  
1 
Given the learning outcomes of the "Bachelor in Computer science" program, this course contributes to the development, acquisition and evaluation of the following learning outcomes:

Content
Philosophy: introduction to numerical methods by means of description and especially implementation of concepts from algebra courses and mathematical analysis. The aim is to develop algorithms to understand the limits of implementing a mathematical concept: data representation (numbers,...) and error processing (calculation, stability, propagation,...).
Language: Python
Language: Python
Teaching methods
Due to the COVID19 crisis, the information in this section is particularly likely to change.
By presentation of the concept and by implementation. If the COVID allows it, the lectures are given facetoface or, if not, remotely. Practical work is given entirely in the classroom if possible, otherwise it is given every other week in the classroom and every other week remotely.
Evaluation methods
Due to the COVID19 crisis, the information in this section is particularly likely to change.
If the COVID allows, the exam is written and openended. Alternatively, the exam could be written as a distance written exam with a mix of openended and multiplechoice questions.
Weekly workouts contribute 2 points in the final evaluation. The weighting between continuous assessments and the sessional examination could be modified according to health conditions.
Weekly workouts contribute 2 points in the final evaluation. The weighting between continuous assessments and the sessional examination could be modified according to health conditions.
Online resources
https://moodleucl.uclouvain.be/course/view.php?id=12977
Teaching materials
 Numerical Methods in Engineering with Python 3 de Jaan Kiusalaas  ISBN10: 1107033853
 Slides on moodle
Faculty or entity
INFO
Force majeure
Evaluation methods
The exam will be a distance written exam with a mix of openended and multiplechoice questions on the moodle platform.
The assessment covers all the material seen during lectures and practicals.
The exam score counts for 90% of the final assessment, with the remaining 10% coming from continuous work and attendance during exercise sessions.