En raison de la crise du COVID-19, les informations ci-dessous sont susceptibles d’être modifiées,
notamment celles qui concernent le mode d’enseignement (en présentiel, en distanciel ou sous un format comodal ou hybride).
5 crédits
30.0 h + 30.0 h
Q2
Enseignants
Ponce Augusto;
Langue
d'enseignement
d'enseignement
Français
Préalables
Le(s) prérequis de cette Unité d’enseignement (UE) sont précisés à la fin de cette fiche, en regard des programmes/formations qui proposent cette UE.
Thèmes abordés
Acquis
d'apprentissage
d'apprentissage
A la fin de cette unité d’enseignement, l’étudiant est capable de : | |
1 | |
Contenu
Le cours abordera la théorie abstraite de la mesure et des éléments d'anaylse harmonique dans l'espace euclidien :
- mesure de Fréchet et intégrale,
- décompositions de mesures,
- théorèmes de convergence intégrale,
- théorème de différentiation de Lebesgue,
- mesure produit et théorèmes de Fubini et Tonelli,
- théorème de changement de variables,
- produit de convolution,
- série et transformée de Fourier.
Méthodes d'enseignement
En raison de la crise du COVID-19, les informations de cette rubrique sont particulièrement susceptibles d’être modifiées.
Les activités d'apprentissage sont constituées par des cours magistraux et des séances de travaux pratiques.Les cours magistraux visent à introduire les concepts fondamentaux, à les motiver en montrant des exemples et en établissant des résultats, à montrer leurs liens réciproques et leurs liens avec d'autres cours du programme de bachelier en sciences mathématiques.
Les séances de travaux pratiques visent à approfondir les concepts abordés lors du cours magistral.
Modes d'évaluation
des acquis des étudiants
des acquis des étudiants
En raison de la crise du COVID-19, les informations de cette rubrique sont particulièrement susceptibles d’être modifiées.
L'acquisition des compétences sera évaluée lors d'un examen final.Les questions demanderont :
- restituer de la matière, notamment des définitions, des théorèmes, des preuves, des exemples,
- choisir et appliquer des méthodes du cours pour résoudre des problèmes et des exercices,
- adapter des méthodes de démonstration du cours à des situations nouvelles,
- synthétiser et comparer des objets et concepts.
- la connaissance, la compréhension et l'application des différents objets et méthodes mathématiques du cours,
- la rigueur des développements, preuves et justifications,
- la qualité de la rédaction des réponses.
Ressources
en ligne
en ligne
Support de cours
- R. G. Bartle, The Elements of Integration and Lebesgue Measure, Wiley, 1966. ISBN-10 : 0471042226
- P. Mironescu. Mesure et intégration. Polycopié parcours L3 math, Université Claude Bernard, Lyon, 2020.
Faculté ou entité
en charge
en charge
MATH
Force majeure
Modes d'évaluation
des acquis des étudiants
des acquis des étudiants
La crise sanitaire implique des incertitudes quant aux modalités d’évaluation en particulier pour la session de juin. Deux options sont envisagées selon la sévérité des contraintes liées à la crise sanitaire.
Un plan A en présentiel :
Un plan A en présentiel :
- Examen écrit
- Examen écrit sur Gradescope