linfo1104  2018-2019  Louvain-la-Neuve

5 credits
30.0 h + 30.0 h
Q1

  This learning unit is not being organized during year 2018-2019.

Language
French
Prerequisites
This course assumes that the student already masters basic programming skills targeted by courses LINFO1101 or LEPL1401 and concepts on algorithmics and simple data structures covered by course LEPL1402.

The prerequisite(s) for this Teaching Unit (Unité d’enseignement – UE) for the programmes/courses that offer this Teaching Unit are specified at the end of this sheet.
Main themes
  • Programming paradigms: functional programming, object-oriented programming and declarative dataflow programming;
  • Formal semantics and reasoning techniques on programs;
  • Core language and abstract machine;
  • Data Abstractions and Object-Oriented Modeling;
  • Recursive algorithms and programming with invariant using linear and tree data structures;
  • Analysis of the temporal complexity of an algorithm and the spatial complexity of a data structure;
  • Non-determinism, scheduling and equity;
  • Implementation of medium complexity programs with a focus on test and program validation methods.
Aims

At the end of this learning unit, the student is able to :

1
Regarding the learning outcomes of the program of Bachelor in Engineering, this course contributes to the development and the acquisition of the following learning outcomes:
  • LO 1.1, 1.2
  • LO 2.3, 2.4, 2.5, 2.6, 2.7
  • LO 4.2, 4.3, 4.4
Given the learning outcomes of the "Bachelor in Computer Science" program, this course contributes to the development, acquisition and evaluation of the following learning outcomes:
  • S1.I2., S1.I3, S1.I5
  • S2.2., S2.3, S2.4
  • S5.3, S5.4., S5.5.
Students completing successfully this course will be able to
  • specify the problems, divide them into their basic steps, and design algorithms and abstractions to solve them;
  • choose the right programming paradigm and write a program in this paradigm to solve a problem;
  • use formal semantics to explain the accuracy of the program;
  • write small concurrent programs in the deterministic dataflow paradigm.
  • think using abstractions (reason correctly on a system that includes several layers of abstractions, and define new abstractions to simplify the resolution of a problem)
 

The contribution of this Teaching Unit to the development and command of the skills and learning outcomes of the programme(s) can be accessed at the end of this sheet, in the section entitled “Programmes/courses offering this Teaching Unit”.
Bibliography
Peter Van Roy et Seif Haridi, PROGRAMMATION: Concepts, techniques et modèles, Dunod, 2007
Peter Van Roy et Seif Haridi, Concepts, Techniques, and Models of Computer Programming, MIT Press, 2004
Faculty or entity
INFO


Programmes / formations proposant cette unité d'enseignement (UE)

Title of the programme
Sigle
Credits
Prerequisites
Aims
Bachelor in Computer Science

Bachelor in Engineering