UCL - Studies

Version française

Study programmes
First cycle
Second cycle
Third cycle
Faculties and entities
Access to studies
Academic calendar
Search
Simple
Detailed
Per course

Data Mining [STAT2550]
[15h+15h exercises] 5 credits

Version française

Printable version

This course is taught in the 2nd semester

Teacher(s):

Libei Chen

Language:

French

Level:

Second cycle

>> Aims
>> Main themes
>> Content and teaching methods
>> Other information (prerequisite, evaluation (assessment methods), course materials recommended readings, ...)
>> Other credits in programs

Aims

In this course, we will learn data mining methodology and techniques for knowledge discovery in large databases. We will also see how data mining differs from traditional statistics and how to treat a practical problem with an appropriate data mining tool.

Main themes

- Data Mining application domains
- Steps of a data mining project
- Sampling and partionning of the data base and training and validation sets
- Data pretreatment and validation
- Premilinary variable analysis, variables reduction and transformation
- Classification and modeling tools of data mining
- Decision trees
- Neural networks
- Tools to validate and compare estimated models
- Case studies

Content and teaching methods

- Introduction to data mining
o Data and data mining systems
o Data mining applications
o Data mining process and methodology
o Data mining in customer relationship management (CRM)
o Traditional statistics versus data mining

- Data preparation for data mining
o Data preparation stages
o Data specification
o Data extraction and aggregations
o Data audit and exploration
o Data pre-processing

- Predictive modelling
o Decision trees
o Neural networks
o Model validation and assessment

- Descriptive modelling
o Clustering
o K-means
o Kohonen Self-Organising Map

- Case studies

Other information (prerequisite, evaluation (assessment methods), course materials recommended readings, ...)

References:

1. Berry M. and G. Linoff (2000), "Matering Data Mining, The Art and Science of Customer Relationship Management", John Wiley.
2. Bishop, C.M. (1995), Neural Networks for Pattern Recognition, Oxford.
3. Breiman, L., Friedman, J.H., Olshen, R.A., and Stone, C.J. (1984), "Classification and Regression Trees", Wadsworth, Inc., Belmont, California.
4. Han J. and M. Kamber (2000), "Data Mining: Concepts and Techniques", Morgan Kaufmann,.
5. Hastie Tr., R. Tibshirani and J. Friedman (2001), "The Elements of Statistical Learning -Data Mining, Inference and Prdiction", Springer.
6. Haykin S., "Neural Networks: A comprehensive Foundation", Prentice Hall, 1999
7. Kohonen T. (1995), "Self-Organizing Maps", Springer Series in Information Sciences, Oxford University Press.
8. Piatetsky-Shapiro G. and W. J. Frawley (1991), "Knowledge Discovery in Databases", AAAI/MIT Press.
9. Piatetsky-Shapiro G., U. Fayyad, and P. Smith (1996). "From data mining to knowledge discovery: An overview", In U.M. Fayyad, et al. (eds.), Advances in Knowledge Discovery and Data Mining, 1-35. AAAI/MIT Press,.
10. Pyle D. (2000), "Data Prepation for Data Mining", Morgan Kaufman.
11. Richard O. Dula, Pete E. Hart and David G. Stork (2000), "Pattern Classification", John Wiley, Second edition.
12. Van Hulle M. (2000), "Faithful Representations and Topographic Maps: From Distortion- to Information-Based Self-Organization", John Willey & Sons Inc.

Other credits in programs

ECGE3DS/MK

Diplôme d'études spécialisées en économie et gestion (Master in business administration) (marketing)

(5 credits)

Mandatory

ECGE3DS/SC

Diplôme d'études spécialisées en économie et gestion (Master in business administration) (Supply Chain Management)

(5 credits)

Mandatory

STAT21MS/DM

Première année du master en statistique, orientation générale, à finalité spécialisée (data management et data mining)

(5 credits)

Mandatory

STAT21MS/EA

Première année du master en statistique, orientation générale, à finalité sécialisée (économie et assurance)

(5 credits)

STAT21MS/MS

Première année du master en statistique, orientation générale, à finalité spécialisée (marketing et sondage)

(5 credits)

STAT22MS/DM

Deuxième année du master en statistique, orientation générale, à finalité spécialisée (data management et data mining)

(5 credits)

Mandatory

STAT22MS/EA

Deuxième année du master en statistique, orientation générale, à finalité spécialisée (économie et assurance)

(5 credits)

STAT22MS/MS

Deuxième année du master en statistique, orientation générale, à finalité spécialisée (marketing et sondage)

(5 credits)

STAT3DA/E

diplôme d'études approfondies en statistique (statistique et économétrie)

(5 credits)

STAT3DA/P

diplôme d'études approfondies en statistique (pratique de la statistique)

(5 credits)



This site was created in collaboration with ADCP, ADEF, CIO et SGSI
Person in charge : Jean-Louis Marchand - Information : issec@stat.ucl.ac.be
Last update :13/03/2007