Aims
The course aims at providing the students with conceptual bases and methods allowing them to
- solve equations in modulo integer rings;
- determine the existence conditions of solutions for certain diophantic equations;
- apply results of a mathematical analysis to the study of prime numbers;
- execute calculations in point groups of certain cubic projections on module integer bodies.
![](../../images/sc/ligne.gif)
Main themes
Introduction to various aspects of the number theory and its methods, for its particular application to mathematical cryptography.
![](../../images/sc/ligne.gif)
Other information (prerequisite, evaluation (assessment methods), course materials recommended readings, ...)
Prerequisites: elements of linear algebra (first cycle level).
Evaluation: oral examination. The exam consists in the presentation of a personal work developping one aspect of numbers theory and summary questions on the overall of the course.
Support:
- K. Ireland, M. Rosen: A classical introduction to modern number theory, Springer, 2nd edition, 1991;
- J.P. Serre: Cours d'arithmetique, PUF, 1970;
- J.H. Silverman: The arithmetic of elliptic curves, Springer, 1986.
![](../../images/sc/ligne.gif)
Other credits in programs
INFO22
|
Deuxième année du programme conduisant au grade d'ingénieur civil informaticien
|
(3 credits)
| |
INFO23
|
Troisième année du programme conduisant au grade d'ingénieur civil informaticien
|
(3 credits)
| |
MAP22
|
Deuxième année du programme conduisant au grade d'ingénieur civil en mathématiques appliquées
|
(3 credits)
| |
MAP23
|
Troisième année du programme conduisant au grade d'ingénieur civil en mathématiques appliquées
|
(3 credits)
| |
MATH22/G
|
Deuxième licence en sciences mathématiques
|
(3 credits)
| |
![](../../images/sc/ligne.gif)
|