UCL - Studies

Version française

Study programmes
First cycle
Second cycle
Third cycle
Faculties and entities
Access to studies
Academic calendar
Search
Simple
Detailed
Per course

Multivariate Statistical Analysis [INGE1222]
[30h+15h exercises] 4 credits

Version française

Printable version

Teacher(s):

Léopold Simar, François Vandenhende (supplée Léopold Simar)

Language:

French

Level:

First cycle

>> Aims
>> Main themes
>> Content and teaching methods
>> Other information (prerequisite, evaluation (assessment methods), course materials recommended readings, ...)
>> Other credits in programs

Aims

This course develops the elements introduced in the basic Probability and Statistics courses within a multivariate framework, the aim being to equip students with the instruments they need to analyse multidimensional data sets. By the end of the course, students should be able to use the most widely-used instruments to analyse real data. A key aim of the course will therefore be to give students a clear understanding of the methods and how to apply them, and how to use relevant analytical software.

Main themes

Part 1: Basic descriptive methods and basic notations.
In this part, students are taught how matrix notation facilitates treatment of multidimensional data and basic properties of random vectors. They will also learn that the basic (uni-and bivariate) descriptive tools have both their uses and limitations.
Part 2: Techniques of multivariate data analysis.
In this part, students learn about basic dimension reduction techniques for continuous and qualitative variables (principal components, correspondence analysis). Basic classification techniques are also presented. A wide range of examples is given to illustrate these methods and show when they should be used.
Part 3: Multivariate analysis models.
In this part, students see how to model inter-variable relations: linear models (including variance and variance-covariance analysis) which make it possible to use explanatory variables to explain response variable variation. Models adapted to categorical response variable are also introduced, log-linear models for contingency tables, the logit model and discrimination analysis models. Here too, a wide range of examples is given to illustrate these methods and show when they should be used.

Content and teaching methods

Résumé : contenu et méthodes
Course content:
Introduction to multivariate methods, matrix notations and basic properties of random vectors, basic descriptive tools, principal component analysis, simple and multiple correspondence analysis, classification, regression models, including ANOVA and ANCOVA, categorical variable models, discrimination analysis.
Method:
The course comprises:
- lectures (the teacher introduces concepts on the basis of concrete applications and abstracts from this),
- computer-based practical exercise sessions, using software to analyse authentic data

Other information (prerequisite, evaluation (assessment methods), course materials recommended readings, ...)

Course materials (for information only) : Simar (2003: An Introduction to Multivariate Data Analysis, manuscript, 233p., Institut de Statistique, Université catholiquede Louvain, Louvain-la-Neuve

Other credits in programs

FSA12BA

Deuxième année de bachelier en sciences de l'ingénieur, orientation ingénieur civil

(4 credits)

INGE12BA

Deuxième année de bachelier en ingénieur de gestion

(4 credits)

Mandatory

STAT21MS/DM

Première année du master en statistique, orientation générale, à finalité spécialisée (data management et data mining)

(4 credits)

STAT21MS/EA

Première année du master en statistique, orientation générale, à finalité sécialisée (économie et assurance)

(4 credits)

STAT21MS/MM

Première année du master en statistique, orientation générale, à finalité spécialisée (méthodes mathématiques)

(4 credits)

STAT21MS/MS

Première année du master en statistique, orientation générale, à finalité spécialisée (marketing et sondage)

(4 credits)

STAT21MS/ST

Première année du master en statistique, orientation générale, à finalité spécialisée (sciences et technologie)

(4 credits)

STAT22MS/DM

Deuxième année du master en statistique, orientation générale, à finalité spécialisée (data management et data mining)

(4 credits)

STAT22MS/EA

Deuxième année du master en statistique, orientation générale, à finalité spécialisée (économie et assurance)

(4 credits)

STAT22MS/MM

Deuxième année du master en statistique, orientation générale, à finalité spécialisée (méthodes mathématiques)

(4 credits)

STAT22MS/MS

Deuxième année du master en statistique, orientation générale, à finalité spécialisée (marketing et sondage)

(4 credits)

STAT22MS/ST

Deuxième année du master en statistique, orientation générale, à finalité spécialisée (sciences et technologie)

(4 credits)



This site was created in collaboration with ADCP, ADEF, CIO et SGSI
Person in charge : Jean-Louis Marchand - Information : info@espo.ucl.ac.be
Last update :13/03/2007