UCL - Etudes

Formations
Premier cycle
Deuxième cycle
Troisième cycle
Certificats (programmes non académiques)
Passerelles
Formation continue
Facultés et entités
Cadre académique
Réforme de Bologne
Accès aux études
Organisation des études
Lexique
Calendrier académique
Règlement des études et examens
Charte pédagogique
Renseignements généraux

Introduction to Bayesian statistics. [STAT2415]
[15h] 2.5 credits

Version française

Printable version

This course is taught in the 1st semester

Teacher(s):

Philippe Lambert

Language:

french

Level:

2nd cycle course

>> Aims
>> Main themes
>> Content and teaching methods
>> Other information (prerequisite, evaluation (assessment methods), course materials recommended readings, ...)
>> Other credits in programs

Aims

By the end of the course, the student will be familiar with the principles
and the basic techniques in Bayesian statistics. He or she will be able to
use and to put forward the advantages and drawbacks of that paradigm in
standard problems.

Main themes

- The Bayesian model: basic principles.
- The likelihood function and its a priori specification.
- One-parameter models: choice of the a priori distribution, derivation of
the a posteriori distribution, summarizing the a posteriori distribution.
- Multi-parameter models: choice of the a priori distribution, derivation
of the a posteriori distribution, nuisance parameters. Special
cases: the multinomial and the multivariate Gaussian models.
- Large sample inference and connections with asymptotic frequentist
inference.
- Bayesian computation.

Content and teaching methods

- The Bayesian model: basic principles.
- The likelihood function and its a priori specification.
- One-parameter models: choice of the a priori distribution, derivation of
the a posteriori distribution, summarizing the a posteriori distribution.
- Multi-parameter models: choice of the a priori distribution, derivation
of the a posteriori distribution, nuisance parameters. Special
cases: the multinomial and the multivariate Gaussian models.
- Large sample inference and connections with asymptotic frequentist
inference.
- Bayesian computation.

Other information (prerequisite, evaluation (assessment methods), course materials recommended readings, ...)

References :
Congdon, P. (2001) Bayesian Statistical Modelling. Wiley.
Gelman, A., Carlin, J.B., Stern, H.S. and Rubin, D.B. (1995) Bayesian Data Analysis. Chapman and Hall.
Robert, C.P. (1992) L'Analyse Statistique Bayesienne. Paris: Economica.
Robert, C.P. (1994) The Bayesian Choice. New York: Springer-Verlag.
Spiegelhalter, D.J., Thomas, A. and Best, N.G. (1999) WinBUGS User Manual. MRC Biostatistics Unit.

Other credits in programs

MATH22/S

Deuxième licence en sciences mathématiques (Statistique)

(2 credits)

STAT2MS

Master en statistique, orientation générale, à finalité spécialisée

(2.5 credits)

STAT3DA/B

diplôme d'études approfondies en statistique (biostatistique et épidémiologie)

(2.5 credits)

STAT3DA/E

diplôme d'études approfondies en statistique (statistique et économétrie)

(2.5 credits)

STAT3DA/M

Diplôme d'études approfondies en statistique (méthodologie de la statistique)

(2.5 credits)

STAT3DA/P

diplôme d'études approfondies en statistique (pratique de la statistique)

(2.5 credits)



Ce site a été conçu en collaboration avec ADCP, ADEF, CIO et SGSI
Responsable : Jean-Louis Marchand - Contact : issec@stat.ucl.ac.be
Dernière mise à jour : 25/05/2005