UCL - Etudes

Formations
Premier cycle
Deuxième cycle
Troisième cycle
Certificats (programmes non académiques)
Passerelles
Formation continue
Facultés et entités
Cadre académique
Réforme de Bologne
Accès aux études
Organisation des études
Lexique
Calendrier académique
Règlement des études et examens
Charte pédagogique
Renseignements généraux

Intelligence artificielle : Apprentissage et reconnaissance [INGI2262]
[30h+30h exercises] 5 credits

Version française

Printable version

This course is taught in the 1st semester

Teacher(s):

Yves Deville, Pierre Dupont (coord.), Marco Saerens

Language:

english

Level:

2nd cycle course

>> Aims
>> Main themes
>> Content and teaching methods
>> Other information (prerequisite, evaluation (assessment methods), course materials recommended readings, ...)
>> Other credits in programs

Aims

- To understand and apply standard techniques to build computer programs that automatically improve with experience

- To assess the quality of a learned model for a given task

- To assess the relative performance of several learning algorithms

- To justify the use of a particular learning algorithm given the nature of the data, the learning problem and a relevant performance measure

- To use, adapt and extend learning software

Main themes

- Leaning as search, inductive bias
- Combinations of decisions
- Loss function minimization, gradient descent
- Performance assessment
- Instance-based learning
- Probabilistic learning
- Unsupervised classification

Content and teaching methods

- Concept learning, Generalization as Search, Version Space
- Decision trees
- Multilayer Perceptrons
- Quality measures, Confidence intervals, Hypothesis testing
- K-Nearest Neighbors
- Bayesian Learning, Naïve Bayes
- Clustering techniques

Teaching method: lectures (theory), simulations on real data, extensions of learning software, problem based learning

Other information (prerequisite, evaluation (assessment methods), course materials recommended readings, ...)

- Prerequisites:
(1) INGI 2261 Artificial Intelligence: representation and reasoning
(2) Basic knowledge in probability and statistics

- Reference book:
Machine Learning, Tom Mitchell, McGraw Hill, 1997

- Evaluation:
Written exam

-Remarque:
WEB site: http://www.info.ucl.ac.be/notes_de_cours/INGI2262/

Other credits in programs

ECGE3DS/IG

Diplôme d'études spécialisées en économie et gestion (informatique de gestion - Master in Information Systems)

(5 credits)

FSA3DS/IN

Diplôme d'études spécialisées en sciences appliquées (informatique)

(5 credits)

INFO22

Deuxième année du programme conduisant au grade d'ingénieur civil informaticien

(5 credits)

Mandatory

MAP23

Troisième année du programme conduisant au grade d'ingénieur civil en mathématiques appliquées

(5 credits)



Ce site a été conçu en collaboration avec ADCP, ADEF, CIO et SGSI
Responsable : Jean-Louis Marchand - Contact : secretaire@fsa.ucl.ac.be
Dernière mise à jour : 25/05/2005