PPIC : Tool for Sequencial Pattern Mining using CP

The implementations of PPIC performances are presented here. We used six real-life datasets and one synthetic (data200k) with varied characteristics show in Table. 1. Sparsity, representing the average of the number of times items are appeared in each sequence, it is a good indicator to evaluate how sparse or dense dataset is. We can remark then that Kosorak is the largest and the most dense dataset.

Table 1: Dataset Features. Sparsity is equal to (--1--
#SDB × -#s-

SDB #SDBN avg(#s)avg(#I∕s)max(#s)sparsitydescription

BIBLE36369 1390521.64 17.85 100 1.2 text
FIFA 20450 2990 36.24 34.74 100 1.2 web click stream
Kosarak 69999 211447.98 7.98 796 1.0 web click stream
Leviathan 5834 9025 33.81 26.34 100 1.3 text
PubMed 17237 1993129.56 24.82 198 1.2 bio-medical text
data200k 200000 26 50.25 18.25 86 2.8 synthetic data
protein 103120 25 482.25 19.93 600 24.2 protein sequences

Our work is carried in OscaR Solver, implemented in Scala and are run under JVM with maximum memory set to 8GB. We used a machine with processor 2.7Hz Intel core i5 and 8GB of RAM with Linux 3.19.0-32-generic 64 bits distribution Mint 17.3. Execution time limit is set to 3600 seconds (1 hour)


Our proposals are compared with:

  1. CP-Based Approaches : GapSeq and PP CPSM
  2. Specialized Approaches : cSPADE spmf.LAPIN PrefixSpan SPAM
  3. Other : SMA and SPIRIT
  • GapSeq: Kemmar, A., Loudni, S., Lebbah, Y., Boizumault, P., Charnois, T.: A global constraint for mining sequential patterns with gap constraint. arXiv preprint arXiv:1511.08350 (2015)
  • PP: Kemmar, A., Loudni, S., Lebbah, Y., Boizumault, P., Charnois, T.: Prefixprojection global constraint for sequential pattern mining. In: Principles and Practice of Constraint Programming, Springer (2015) 226–243
  • CPSM: Negrevergne, B., Guns, T.: Constraint-based sequence mining using constraint programming. In: Integration of AI and OR Techniques in Constraint Programming. Springer (2015) 288–305
  • cSPADE: Zaki, M.J.: Sequence mining in categorical domains: incorporating constraints. In: Proceedings of the ninth international conference on Information and knowledge management, ACM (2000) 422–429
  • LAPIN: Yang, Z., Wang, Y., Kitsuregawa, M.: LAPIN: effective sequential pattern mining algorithms by last position induction for dense databases. In: Advances in Databases: Concepts, Systems and Applications, 12th International Conference on Database Systems for Advanced Applications, DASFAA 2007, Bangkok, Thailand, April 9-12, 2007, Proceedings. (2007) 1020–1023
  • PrefixSpan: Pei, J., Han, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U., Hsu, M.C.: Prefixspan: Mining sequential patterns efficiently by prefix-projected pattern growth. In: icccn, IEEE (2001) 0215
  • SPAM: Ayres, J., Flannick, J., Gehrke, J., Yiu, T.: Sequential pattern mining using a bitmap representation. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, July 23-26, 2002, Edmonton, Alberta, Canada. (2002) 429–435
  • SMA: Trasarti, R., Bonchi, F., Goethals, B.: Sequence mining automata: A new technique for mining frequent sequences under regular expressions. In: Data Mining, 2008. ICDM’08. Eighth IEEE International Conference on, IEEE (2008) 1061–1066
  • SPIRIT : Garofalakis, M.N., Rastogi, R., Shim, K.: Spirit: Sequential pattern mining with regular expression constraints. In: VLDB. Volume 99. (1999) 7–10

PPIC (PPIC, PPDC, PPmixed) vs CP-based approaches


PPIC (PPIC) vs Specialized approaches


Handling some constraints