Students completing the major in Artificial Intelligence: big data, optimization and algorithms will be able to:
- Identify and implement methods and techniques that allow software to solve complex problems that when solved by humans require “intelligence”,
- Understand and put to good use methods and techniques relating to artificial intelligence such as automatic reasoning, research and heuristics, acquisition and representation of knowledge, automatic learning, problems associated with overcoming constraints,
- Identify applications and its methods and tools; understand a particular category of applications and its related techniques, for example robotics, computer vision, planning, data mining, computational linguistics and bioinformatics, big data processing,
- Formalise and structure a body of complex knowledge and use a systematic and rigorous approach to develop quality “intelligence” systems.
|
|||||||||||||||||||||||||||
The student shall select
|
|||||||||||||||||||||||||||
From 20 to 30 credits | |||||||||||||||||||||||||||
Annual unit | |||||||||||||||||||||||||||
1 | 2 | ||||||||||||||||||||||||||
Content: | |||||||||||||||||||||||||||
Required courses in Artificial Intelligence: big data, optimization and algortihms | |||||||||||||||||||||||||||
LINGI2266 | Advanced Algorithms for Optimization | Pierre Schaus | 30h+15h | 5 credits | q1 | x | x | ||||||||||||||||||||
LINGI2263 | Computational Linguistics | Pierre Dupont | , Pierre Dupont (compensates Cédrick Fairon) ,30h+15h | 5 credits | q1 | x | x | ||||||||||||||||||||
LINGI2364 | Mining Patterns in Data | Siegfried Nijssen | 30h+15h | 5 credits | q2 | x | x | ||||||||||||||||||||
LINGI2365 | Constraint programming | Pierre Schaus | , Pierre Schaus (compensates Yves Deville)30h+15h | 5 credits | q2 | x | x | ||||||||||||||||||||
Elective courses in Artificial Itelligence
The student select 10 credits among
|
|||||||||||||||||||||||||||
LELEC2870 | Machine learning : regression, deep networks and dimensionality reduction | John Lee | , Michel Verleysen30h+30h | 5 credits | q1 | x | x | ||||||||||||||||||||
LELEC2885 | Image processing and computer vision | Christophe De Vleeschouwer (coord.) | , Laurent Jacques30h+30h | 5 credits | q1 | x | x | ||||||||||||||||||||
LGBIO2010 | Bioinformatics | Pierre Dupont | 30h+30h | 5 credits | q1 | x | x | ||||||||||||||||||||
LINGI2145 | Cloud Computing | Etienne Riviere | 30h+15h | 5 credits | q1 | x | x | ||||||||||||||||||||
LINMA1691 | Discrete mathematics - Graph theory and algorithms | Vincent Blondel | , Jean-Charles Delvenne30h+22.5h | 5 credits | q1 | x | x | ||||||||||||||||||||
LINMA1702 | Optimization models and methods I | François Glineur | 30h+22.5h | 5 credits | q2 | x | x | ||||||||||||||||||||
LINMA2450 | Combinatorial optimization | Jean-Charles Delvenne | , Julien Hendrickx30h+22.5h | 5 credits | q1 | x | x | ||||||||||||||||||||
LINMA2472 | Algorithms in data science | Jean-Charles Delvenne (coord.) | , Gautier Krings (compensates Vincent Blondel)30h+22.5h | 5 credits | q1 | x | x | ||||||||||||||||||||
LSINF2275 | Data mining & decision making | Marco Saerens | 30h+15h | 5 credits | q2 | x | x |