Acquérir de solides bases méthodologiques en analyse et traitement de données et les appliquer dans des domaines variés tel que sciences humaines, ingénierie, marketing, finance, assurance ou sciences du vivant...
Au terme de la formation, l’étudiant maîtrisera les concepts fondamentaux en statistique, algorithmique, data mining, machine learning nécessaires à l’exercice du métier de « data scientist ». Il développera des compétences en communication et sera capable d’analyser un problème complexe, de collaborer à un projet de recherche. Selon les objectifs visés par l'étudiant, plusieurs modules au choix sont proposés : données appliquées, algorithmique et informatique, statistique et échantillonnage, data sciences en linguistique, data sciences appliquée à la gestion.
Au terme de ce programme, le diplômé est capable de :
1.2. Les théories de l'apprentissage, la fouille de données et la visualisation de données de grande dimension
1.3. L'inférence statistique, la modélisation et l'informatique statistique. L'étudiant dans l'orientation technologies de l'information se spécialise via des cours obligatoires ou au choix
1.4. Les aspects industriels et entrepreneuriaux de la science des données.L'étudiant dans l'orientation en technologies de l'information se spécialise via une option
1.5. Les systèmes informatiques, y compris le calcul distribué, le calcul embarqué, les réseaux et la sécurité
1.6. Les méthodes numériques et l'optimisation, y compris la programmation par contraintes, la recherche opérationnelle, l'identification et les mathématiques appliquées
2.2. Formaliser et modéliser le problème et concevoir une ou plusieurs solutions techniques originales répondant à ce cahier des charges.
2.3. Evaluer, justifier et classer les solutions au regard de l’ensemble des critères figurant dans le cahier de charges : efficacité, faisabilité, qualité, pertinence et sécurité.
2.4. Implémenter, tester et valider la solution retenue et en interpréter les résultats.
2.5. Formuler des recommandations pour améliorer le caractère opérationnel de la solution.
3.2. Proposer une modélisation et/ou un dispositif expérimental permettant de simuler et de tester des hypothèses relatives au problème étudié.
3.3. Mettre en forme un rapport de synthèse visant à décrire la méthodologie avec rigueur et expliciter les potentialités d’innovation théoriques et/ou techniques résultant de ce travail de recherche.
4.2. S’engager collectivement sur un plan de travail, un échéancier et des rôles à tenir.
4.3. Fonctionner dans un environnement pluridisciplinaire, conjointement avec d’autres acteurs porteurs de différents points de vue : gérer des points de désaccord ou des conflits.
4.4. Prendre des décisions en équipe lorsqu’il y a des choix à faire : que ce soit sur les solutions techniques ou sur l’organisation du travail pour faire aboutir le projet.
5.2. Argumenter et convaincre en s’adaptant au langage de ses interlocuteurs : techniciens, collègues, clients, supérieurs hiérarchiques.
5.3. Communiquer sous forme graphique et schématique ; interpréter un schéma, présenter les résultats d’un travail, structurer des informations.
5.4. Lire, analyser et exploiter des documents techniques (diagrammes, manuels, cahiers de charge…).
5.5. Rédiger des documents écrits en tenant compte des exigences contextuelles et des conventions sociales en la matière.
5.6. Faire un exposé oral convaincant en utilisant les techniques modernes de communication.
6.2. Trouver des solutions qui vont au-delà des enjeux strictement techniques, en intégrant les enjeux de dimension éthique d’un projet (y compris la confidentialité des données et la protection de la vie privée) et de développement durable
6.3. Faire preuve d’esprit critique vis-à-vis d’une solution technique pour en vérifier la robustesse et minimiser les risques qu’elle présente au regard du contexte de sa mise en œuvre.
6.4. S’autoévaluer et développer de manière autonome les connaissances nécessaires pour rester compétent dans son domaine.