Learning outcomes

kima2m  2016-2017  Louvain-la-Neuve

 Building on fundamental scientific and technical knowledge (physics, chemistry, mechanics, mathematics) acquired during the Bachelor’s program, the master’s program in chemistry and materials science enables the student to develop polytechnic as well as specialized competences relating to materials, nanotechnology, as well as chemical and environmental engineering, which will allow him/her to fill leadership positions in the design and production of advanced materials and systems as well as the development and management of advanced technological processes.

The program takes up the broad challenges confronting today’s engineers, thanks to a curriculum taught entirely in English (courses with MAPR2xxx designation) with assistance provided to French-speaking students.

The program combines coherence and flexibility thanks to a modular structure : a specialized focus and a common core taken by all students, complemented by major and elective courses, which provides students with a specific focus to their training. Depending on the majors chosen, the student may become :

• A systems engineer who designs new products or devices with targeted properties and functions;

• A process or chemical engineer who develops new production processes and optimizes or manages production facilities;

• A combination of both.

Through these activities, the chemical and materials engineer systematically takes into account constraints, values and rules (legal, ethical or economic).

He/she is autonomous, capable of managing industrial projects and comfortable working as part of a team. He/she is able to communicate in a foreign language, English in particular.

On successful completion of this programme, each student is able to :
1.demonstrate mastery of a solid body of knowledge and skills in engineering sciences allowing one to solve problems related to materials and procedures (axis 1).

2. organise and carry out an engineering procedure for the development of a specific material, a complex material system, a high purity product and/or complex compound or a process meeting a need or solving a particular problem (axis 2).

3. organise and carry out a research project to understand a physical or chemical phenomenon or a new problem in materials engineering and science or chemical engineering (axis 3).

4. contribute as part of a team to the planning and completion of a project while taking into account its objectives, allocated resources, and constraints (axis 4).

5. communicate effectively (orally or in writing) with the goal of carrying out assigned projects in the workplace. Ideally, the student should be able to communicate in one or more foreign languages in addition to his/her mother tongue (axis 5).

6. demonstrate rigor, openness, critical thinking and a sense of ethics in your work. Using the technological and scientific innovations at your disposal, validate the socio-technical relevance of a hypothesis or a solution and act responsibly (axis 6).