<- Archives UCL - Programme d'études ->


programme d'études 2013-2014

Enseignement et formation



 Le master ingénieur civil en chimie et science des matériaux (KIMA) est une formation polyvalente et modulaire permettant d'acquérir les bases de domaines d'application extrêmement variés, allant du génie chimique et du génie des procédés aux nanotechnologies et à la physique des matériaux électroniques et magnétiques avancés, en passant par le génie environnemental, le développement durable et l'ingénierie des matériaux. Le master répond aux exigences de ces métiers divers et à leur évolution rapide : polyvalence permettant de s'adapter aux évolutions technologiques rapides et à la grande diversité des opportunités d'emploi dans le domaine de la chimie et de la technologie des matériaux, mais également pertinence et compétences pointues par le biais du choix de modules cohérents (dénommés 'options'). De manière générale, la formation repose sur la conviction que l'apprentissage par et à la recherche est une voie optimale de construction des savoirs de l'étudiant (savoirs, savoir-faire, et savoir-être). Pendant sa formation, l'étudiant a donc de nombreuses occasions de se rendre dans les laboratoires expérimentaux. Des visites d'usine et un stage peuvent compléter la formation en autorisant un enracinement dans le quotidien industriel.

Les objectifs de la formation ingénieur civil en chimie et science des matériaux sont de développer aussi bien des compétences disciplinaires, que de promouvoir des compétences professionnnelles plus génériques. Dans la première catégorie, on peut citer

  • des compétences techniques de haut niveau dans les différentes options ;
  • la capacité à rechercher efficacement des connaissances conceptuelles pour la résolution de problèmes concrets ;
  • la capacité à modéliser une problématique de la discipline, de la simuler et de tester des hypothèses afin de comprendre cette problématique ;
  • l'acquisition d'une approche multidisciplinaire d’une problématique du domaine de l'ingénierie chimique et des sciences des matériaux ;
  • la capacité à mener une démarche complète d'ingénierie appliquée : formuler le cahier des charges, concevoir des solutions et les évaluer, implémenter et tester la solution sous forme d'un prototype ou d'un modèle numérique ;
  • la capacité à analyser des problèmes et situations concrets du domaine de l'ingénierie chimique et des sciences des matériaux en vue d’y apporter des solutions et améliorations innovantes.

Parmi les compétences transversales, on peut citer la capacité de travailler en équipe, de planifier le travail personnel, de résoudre de vrais problèmes et non pas seulement de simples exercices, la capacité de remise en cause, d'amélioration continue et d'innovation technologique, ainsi que la capacité à être autonome dans la prise de décision. En plus, la formation vise également de façon plus générique une amélioration des compétences en communication (écrite, orale, diaporama), méthodologiques (recherche documentaire, prise de note), et la maîtrise de l'anglais (à travers des cours donnés en Anglais lors du premier quadrimestre).