Due to the COVID-19 crisis, the information below is subject to change,
in particular that concerning the teaching mode (presential, distance or in a comodal or hybrid format).
5 credits
30.0 h
Q1
Teacher(s)
Candelon Bertrand;
Language
English
Main themes
This course overviews topics in computational finance and financial econometrics (data sciences applied to finance).
The emphasis of the course will be on making the transition from an economic model of asset return behavior to an econometric model using real data.
This involves:
Both edX and DataCamp plateforms will be used to allow practical training and continuous learning on R.
The emphasis of the course will be on making the transition from an economic model of asset return behavior to an econometric model using real data.
This involves:
- exploratory data analysis;
- specification of models to explain the data;
- estimation and evaluation of models;
- testing the economic implications of the model;
- forecasting from the model.
Both edX and DataCamp plateforms will be used to allow practical training and continuous learning on R.
Aims
At the end of this learning unit, the student is able to : | |
1 |
Upon completion of this course, students are expected to complete the following key tasks:
3. Knowledge and reasoning; 4. Critical thinking skills. |
Content
The following topics will be covered:
- Introduction to R manipulation and programming (1x3h)
- Expected utility framework and modern portfolio theory using R (3x3h)
- Refresher on basic econometrics and linear regression (1x3h)
- TS topics (including volatility modelling) (3x3h)
- GMM estimation applied to asset pricing (1x3h)
Faculty or entity
CLSM