En raison de la crise du COVID-19, les informations ci-dessous sont susceptibles d’être modifiées,
notamment celles qui concernent le mode d’enseignement (en présentiel, en distanciel ou sous un format comodal ou hybride).
5 crédits
30.0 h
Q1
Enseignants
Candelon Bertrand;
Langue
d'enseignement
d'enseignement
Anglais
Préalables
You should have a knowledge of basic topics in statistics, econometrics and finance such as those covered in the following courses:
Fundamental mathematical and statistical concepts (such as those covered in Mathématiques avancées et fondements d'économétrie [ LECGE1337 ])
Advanced Finance [LLSMS2100A or LLSMS2100B]
In addition, this course is reserved for students with a bachelor's degree in business engineering or students with equivalent quantitative method skills
Fundamental mathematical and statistical concepts (such as those covered in Mathématiques avancées et fondements d'économétrie [ LECGE1337 ])
Advanced Finance [LLSMS2100A or LLSMS2100B]
In addition, this course is reserved for students with a bachelor's degree in business engineering or students with equivalent quantitative method skills
Thèmes abordés
This course overviews topics in computational finance and financial econometrics (data sciences applied to finance).
The emphasis of the course will be on making the transition from an economic model of asset return behavior to an econometric model using real data.
This involves:
Both edX and DataCamp plateforms will be used to allow practical training and continuous learning on R.
The emphasis of the course will be on making the transition from an economic model of asset return behavior to an econometric model using real data.
This involves:
- exploratory data analysis;
- specification of models to explain the data;
- estimation and evaluation of models;
- testing the economic implications of the model;
- forecasting from the model.
Both edX and DataCamp plateforms will be used to allow practical training and continuous learning on R.
Acquis
d'apprentissage
d'apprentissage
A la fin de cette unité d’enseignement, l’étudiant est capable de : | |
1 |
Upon completion of this course, students are expected to complete the following key tasks:
3. Knowledge and reasoning; 4. Critical thinking skills. |
Contenu
The following topics will be covered:
- Introduction to R manipulation and programming (1x3h)
- Expected utility framework and modern portfolio theory using R (3x3h)
- Refresher on basic econometrics and linear regression (1x3h)
- TS topics (including volatility modelling) (3x3h)
- GMM estimation applied to asset pricing (1x3h)
Modes d'évaluation
des acquis des étudiants
des acquis des étudiants
En raison de la crise du COVID-19, les informations de cette rubrique sont particulièrement susceptibles d’être modifiées.
Continuous evaluation- Date:
- Type of evaluation:
- Comments:
- Oral:
- Written:
- Unavailability or comments:
- Oral:
- Written:
- Unavailability or comments:
Faculté ou entité
en charge
en charge
CLSM