Advanced Transistors

lelec2541  2020-2021  Louvain-la-Neuve

Advanced Transistors
Due to the COVID-19 crisis, the information below is subject to change, in particular that concerning the teaching mode (presential, distance or in a comodal or hybrid format).
5 credits
30.0 h + 30.0 h
Q2
Teacher(s)
Flandre Denis (coordinator); Hackens Benoît; Raskin Jean-Pierre;
Language
English
Main themes
This training on advanced semiconductor devices follows naturally that of LELEC1330. It is focused on high performance devices in terms of speed, noise and temperature. The course highlights the links between physical phenomena, materials, fabrication and performances. Simulation and characterisation tools will be introduced. Content : Special semiconductors (heterostructures, SOI, III-V), HEMT, JFET, MESFET, Diodes, bipolar transistors, and small scale and high frequency MOS devices.
Aims

At the end of this learning unit, the student is able to :

1 In consideration of the reference table AA of the program "master in electrical engineering ", this course contributes to the development, to the acquisition and to the evaluation of the following experiences of learning:
  • AA1.1, AA1.2, AA1.3
  • AA2.1, AA2.2, AA2.5
  • AA3.1, AA3.2, AA3.3
  • AA4.1, AA4.2, 4.3, AA4.4
  • AA5.3, AA5.4, AA5.5, AA5.6,
  • AA6.1
At the end of this course,students will be able to
- Describe the physical behavior at play, and use appropriate models, in advanced semiconductor devices and in a wide range of temperature and frequency.
- Use simulation and accurate characterization tools of semiconductor devices.
- Model new devices in the perspective of forthcoming courses and master projects.
 
Content
Lectures are given interactively and are based on the themes presented above. They are complementary to the written notes and references below as they give a different perspective and are based on student questions.
The project is an extension of the lectures and allows a deeper understanding of advanced devices. It relies on a bibliographic review of a specific subject chosen by the students (groups of 1 to 3), and/or the analysis of experimental data and modelling, depending on ressources available in the lab.
Teaching methods

Due to the COVID-19 crisis, the information in this section is particularly likely to change.

In presence, as long as sanitary rules allow :
  • 11 lectures
  • 2 laboratories
  • 1 individual project or in small groups, with intermediate presentations and discussions with the teachers.
Evaluation methods

Due to the COVID-19 crisis, the information in this section is particularly likely to change.

Written exam on the theoretical background (50%)
Report and oral presentation of a personal/group project (50%)
Other information
Background in physics, including quantum mechanics, physics of semiconductor devices (e.g. LELEC1330)
Bibliography
Slides et autres supports proposés par les enseignants sur Moodle.
Références disponibles en bibliothèques :
-  « Physics of low-dimensional semiconconductors », J.H. Davies, Cambridge University Press
-  « Physique des dispositifs semi-conducteurs », De Boeck Université, J.-P. Colinge et F. Van de Wiele
-  « Silicon-on-Insulator Technology: Materials to VLSI », 2nd Edition, J.-P. Colinge, Kluwer Academic Publishers
-  « Operation and modeling of the MOS transistor», Y. P. Tsividis, McGraw-Hill Book Company.
- « Quantum semiconductor Structures », C. Weisbuch and B. Vinter, Academic Press Inc.
Faculty or entity
ELEC
Force majeure
Evaluation methods
No modification except that the professors might organize an oral exam for students for whom they have doubts about the grade obtained for the written exam.


Programmes / formations proposant cette unité d'enseignement (UE)

Title of the programme
Sigle
Credits
Prerequisites
Aims
Master [120] in Physical Engineering

Master [120] in Electrical Engineering

Master [120] in Chemical and Materials Engineering

Master [120] in Electro-mechanical Engineering

Advanced Master in Nanotechnologies