Due to the COVID-19 crisis, the information below is subject to change,
in particular that concerning the teaching mode (presential, distance or in a comodal or hybrid format).
5 credits
Q1
Language
English
Aims
At the end of this learning unit, the student is able to : | |
1 |
|
Content
- Thermal design principles/reactor heat generation
- Reminders about single phase transport equations (prerequisite)
- Two-phase flow models, transport equations
- Thermodynamic (vessels/pressurizer) and power conversion cycle (steam)
- Heat transfer analysis in a fuel element
- Reminders about single phase fluid mechanics and heat transfer (prerequisite)
- Two-phase fluid mechanics and pressure drops
- Two-phase heat transfer (pool boiling, flow boiling)
- ·Single heated channel (thermal and flow problems)
- Flow loops (steady state natural convection)
Teaching methods
Due to the COVID-19 crisis, the information in this section is particularly likely to change.
- 2 t.m.: 40h teaching + seminar and 15h practical works in classroom
- SCK.CEN guidance for demonstrations with codes
- SCK.CEN + UCL TA for practical works
Evaluation methods
Due to the COVID-19 crisis, the information in this section is particularly likely to change.
The final mark is composed of (i) a written exam(80%, closed book)including an exercise and a theoretical part, and (ii) the mini-project(20%).
Other information
Yann BARTOSIEWICZ yann.bartosiewicz@uclouvain.be
Professor at the Université Catholique de Louvain (UCL, Louvain-la-Neuve)
Master in Turbulence modeling and Transfer Phenomena, Ecole Nationale Polytechnique de Grenoble, France, 1998.
PhD in Mechanical engineering, Université de Sherbrooke, Canada, 2003: Modeling of supersonic plasma jets in non-Local Thermodynamics Equilibrium
Research fields: Fluid mechanics, heat transfer, compressible flows, two-phase flows, thermodynamics, computational fluid dynamics
Teaching duties in BNEN: Nuclear Thermal Hydraulics
Other research activities: scientific leader for UCL in European projects in nuclear thermal-hydraulics:
NURESIM: CFD Simulation of instabilities in a stratified two-phase flows relevant to PTS scenario NURISP: Simulation of two-phase chocked flows during LOCA: implementation of non-equilibrium models in CATHARE 3
THINS: Direct and Large Eddy Simulation (DNS/LES) of convective heat transfer for low Prandtl fluids (Liquid metals)
UCL Promotor of other projects in energy
Other duties: Member of the CFD group at OECD, Member of the European Nuclear Engineering Network (ENEN)
Professor at the Université Catholique de Louvain (UCL, Louvain-la-Neuve)
Master in Turbulence modeling and Transfer Phenomena, Ecole Nationale Polytechnique de Grenoble, France, 1998.
PhD in Mechanical engineering, Université de Sherbrooke, Canada, 2003: Modeling of supersonic plasma jets in non-Local Thermodynamics Equilibrium
Research fields: Fluid mechanics, heat transfer, compressible flows, two-phase flows, thermodynamics, computational fluid dynamics
Teaching duties in BNEN: Nuclear Thermal Hydraulics
Other research activities: scientific leader for UCL in European projects in nuclear thermal-hydraulics:
NURESIM: CFD Simulation of instabilities in a stratified two-phase flows relevant to PTS scenario NURISP: Simulation of two-phase chocked flows during LOCA: implementation of non-equilibrium models in CATHARE 3
THINS: Direct and Large Eddy Simulation (DNS/LES) of convective heat transfer for low Prandtl fluids (Liquid metals)
UCL Promotor of other projects in energy
Other duties: Member of the CFD group at OECD, Member of the European Nuclear Engineering Network (ENEN)
Online resources
Faculty or entity
EPL
Programmes / formations proposant cette unité d'enseignement (UE)
Title of the programme
Sigle
Credits
Prerequisites
Aims
Advanced Master in Nuclear Engineering