UCLouvainIbnen2001Nuclear thermal-hydraulics (Centre
d'étude nucléaire-Mol)

Due to the COVID-19 crisis, the information below is subject to change, in particular that concerning the teaching mode (presential, distance or in a comodal or hybrid format).

5 credits Q1

Language :	English				
Place of the course	Autre site				
Aims	 To learn how to estimate the volumetric heat generation rate in fission reactor cores under normal operation and shutdown conditions To learn how to analyse the thermal performance of nuclear fuel elements To learn the basic fluid mechanics of single phase reactor cooling systems To learn to calculate pressure drop in reactor systems, including tube bundles, and spacer grids To learn the basic fluid mechanics of two-phase systems, including modelling approaches, flow regime maps, void-quality relations, and pressure drop evaluation To learn the fundamentals of boiling heat transfer, and its implications for reactor design To calculate and analyze the coolant conditions throughout a reactor loop including the determination of natural convection regime To learn the fundamentals of core thermal design, e.g. flow rate/pressure drop relation under different conditions (friction dominated/gravity dominated) for the evaluation of cooling performances In addition of supervised exercises, a mini-project is organized about modelling and computing pressure drop in a boiling channel (different conditions and assumptions may be treated over the years). 				
Evaluation methods	Due to the COVID-19 crisis, the information in this section is particularly likely to change. The final mark is composed of (i) a written exam(80%, closed book)including an exercise and a theoretical part, and (ii) the mini-project(20%).				
Teaching methods	Due to the COVID-19 crisis, the information in this section is particularly likely to change. • 2 t.m.: 40h teaching + seminar and 15h practical works in classroom • SCK.CEN guidance for demonstrations with codes • SCK.CEN + UCL TA for practical works				
Content	 Thermal design principles/reactor heat generation Reminders about single phase transport equations (prerequisite) Two-phase flow models, transport equations Thermodynamic (vessels/pressurizer) and power conversion cycle (steam) Heat transfer analysis in a fuel element Reminders about single phase fluid mechanics and heat transfer (prerequisite) Two-phase fluid mechanics and pressure drops Two-phase heat transfer (pool boiling, flow boiling) Single heated channel (thermal and flow problems) Flow loops (steady state natural convection) 				
Inline resources	https://www.sckcen.be/fbnen				

Other infos	 Yann BARTOSIEWICZ yann.bartosiewicz@uclouvain.be Professor at the Université Catholique de Louvain (UCL, Louvain-la-Neuve) Master in Turbulence modeling and Transfer Phenomena, Ecole Nationale Polytechnique de Grenoble, France, 1998. PhD in Mechanical engineering, Université de Sherbrooke, Canada, 2003: Modeling of supersonic plasma jets in non-Local Thermodynamics Equilibrium Research fields: Fluid mechanics, heat transfer, compressible flows, two-phase flows, thermodynamics, computational fluid dynamics Teaching duties in BNEN: Nuclear Thermal Hydraulics Other research activities: scientific leader for UCL in European projects in nuclear thermal-hydraulics: NURESIM: CFD Simulation of instabilities in a stratified two-phase flows relevant to PTS scenario NURISP: Simulation of two-phase chocked flows during LOCA: implementation of non-equilibrium models in CATHARE 3 THINS: Direct and Large Eddy Simulation (DNS/LES) of convective heat transfer for low Prandtl fluids (Liquid metals) UCL Promotor of other projects in energy Other duties: Member of the CFD group at OECD, Member of the European Nuclear Engineering Network (ENEN)
Faculty or entity in charge	EPL

Programmes containing this learning unit (UE)						
Program title	Acronym	Credits	Prerequisite	Aims		
Advanced Master in Nuclear Engineering	GNUC2MC	5		٩		