Note du 29 juin 2020
Sans connaitre encore le temps que dureront les mesures de distances sociales liées à la pandémie de Covid-19, et quels que soient les changements qui ont dû être opérés dans l’évaluation de la session de juin 2020 par rapport à ce que prévoit la présente fiche descriptive, de nouvelles modalités d’évaluation des unités d’enseignement peuvent encore être adoptées par l’enseignant ; des précisions sur ces modalités ont été -ou seront-communiquées par les enseignant·es aux étudiant·es dans les plus brefs délais.
Sans connaitre encore le temps que dureront les mesures de distances sociales liées à la pandémie de Covid-19, et quels que soient les changements qui ont dû être opérés dans l’évaluation de la session de juin 2020 par rapport à ce que prévoit la présente fiche descriptive, de nouvelles modalités d’évaluation des unités d’enseignement peuvent encore être adoptées par l’enseignant ; des précisions sur ces modalités ont été -ou seront-communiquées par les enseignant·es aux étudiant·es dans les plus brefs délais.
5 crédits
30.0 h + 22.5 h
Q1
Enseignants
Blondel Vincent; Delvenne Jean-Charles (coordinateur); Krings Gautier (supplée Blondel Vincent);
Langue
d'enseignement
d'enseignement
Anglais
Préalables
Une certaine familiarité avec l'algèbre linéaire (par ex LFSAB1101 et LFSAB1102) et les mathématiques discrètes (par ex LINMA 1691) est requise.
Thèmes abordés
L'objet du cours est d'explorer des questions principalement algorithmiques relatives aux défis posés par les données massives (Big Data).
Acquis
d'apprentissage
d'apprentissage
A la fin de cette unité d’enseignement, l’étudiant est capable de : | |
1 |
Eu égard au référentiel AA, ce cours contribue au développement, à l'acquisition et à l'évaluation des acquis d'apprentissage suivants :
Acquis d'apprentissage transversaux :
|
La contribution de cette UE au développement et à la maîtrise des compétences et acquis du (des) programme(s) est accessible à la fin de cette fiche, dans la partie « Programmes/formations proposant cette unité d’enseignement (UE) ».
Contenu
Le contenu du cours pourra varier d'année en année et toucher diverses questions algorithmiques reliées au stockage, à la diffusion et à l'analyse des données massives (Big Data). Par exemple, la détection de plagiat, la classification de pages web, la découverte de motifs fréquents, l'analyse des réseaux sociaux, la parallélisation des calculs et du stockage, les principes des réseaux pair-à-pair, etc.
Méthodes d'enseignement
Cours ex cathedra en partie, et projets avec rapports écrits et/ou présentation orale
Modes d'évaluation
des acquis des étudiants
des acquis des étudiants
Présentation écrite et orale de projets sur une matière théorique et/ou d'une analyse de données réelles pendant le quadrimestre. Examen écrit ou bien oral avec préparation écrite.
Ressources
en ligne
en ligne
Bibliographie
Variable.
Faculté ou entité
en charge
en charge
MAP
Programmes / formations proposant cette unité d'enseignement (UE)
Intitulé du programme
Sigle
Crédits
Prérequis
Acquis
d'apprentissage
d'apprentissage
Master [120] : bioingénieur en sciences agronomiques
Master [120] : ingénieur civil en mathématiques appliquées
Master [120] : ingénieur civil en informatique
Master [120] en science des données, orientation statistique
Master [120] en sciences informatiques
Master [120] : ingénieur civil en science des données
Master [120] en science des données, orientation technologies de l'information
Master [120] en sciences mathématiques
Master [120] en statistique, orientation générale
Master [120] : bioingénieur en sciences et technologies de l'environnement