rules of Probability calculus, the bases of statistical inference, the principles and practice of the classical methods
for statistical analysis of continuous data (Regression, Analysis of Variance) and of discrete data (Contingency
tables, Goodness of fit tests), and the use of a statistical software for applying the above.
constraints, the course offers of two main modules : Linear Modeling, and Methods of Multivariate Analysis.
The examples presented are mainly drawn from researches in Ecology.
At the end of this learning unit, the student is able to : | |
1 | The objectives are that, as a result of successfully attending this course, the students : |
The contribution of this Teaching Unit to the development and command of the skills and learning outcomes of the programme(s) can be accessed at the end of this sheet, in the section entitled “Programmes/courses offering this Teaching Unit”.
– Simple and multiple linear regression, AN(C)OVA included
– Generalised linear models: logistic and Poisson regressionoisson
– Linear mixed models
– Implementation in R
Module 2 (UNamur): Multivariate data exploration
– Data matrices
– Useful techniques from matrix algebra
– Multiple linear regression (no inference)
– Principal component analysis
– Classification
– Canonical correspondence analysis
– Implementation in R and Excel
For Module 2 (UNamur), self-learning sessions and flipped classrooms; instructions will be given in the first course hour.
Module 1 (UCLouvain) : written exam during the exam session. Dispensatory test for a part of the exam near the end of the lectures.
Module 2 (Unamur) : Continuous evaluation during flipped classrooms (50%) : multivariate analyses in Excel and interpretation of the results. Evaluation during exercise classes (50%) : multivariate data analyses in R and interpretation of the results. No second session.
Module 1 (UCLouvain): R scripts of the recommended book: http://highstat.com/index.php/analysing-ecological-data
Module 2 (UNamur)
– Self-study website: http://webapps.fundp.ac.be/umdb/biostats2017/
– Videos:
http://medias.save.fundp.ac.be/videos/webcampus/2016-cours-biostatistique-Depiereux/module-200-10.mp4
http://medias.save.fundp.ac.be/videos/webcampus/2016-cours-biostatistique-Depiereux/module-210-10.mp4
http://medias.save.fundp.ac.be/videos/webcampus/2016-cours-biostatistique-Depiereux/module-220-10.mp4
http://medias.save.fundp.ac.be/videos/webcampus/2016-cours-biostatistique-Depiereux/module-220-20.mp4
http://medias.save.fundp.ac.be/videos/webcampus/2016-cours-biostatistique-Depiereux/module-220-30.mp4
http://medias.save.fundp.ac.be/videos/webcampus/2016-cours-biostatistique-Depiereux/module-230-10.mp4
http://medias.save.fundp.ac.be/videos/webcampus/2017-cours-biostatistique-Depiereux/module-240-10.mp4
http://medias.save.fundp.ac.be/videos/webcampus/2017-cours-biostatistique-Depiereux/module-240-20.mp4
http://medias.save.fundp.ac.be/videos/webcampus/2017-cours-biostatistique-Depiereux/module-240-30.mp4
http://medias.save.fundp.ac.be/videos/webcampus/2017-cours-biostatistique-Depiereux/module-240-40.mp4
http://medias.save.fundp.ac.be/videos/webcampus/2017-cours-biostatistique-Depiereux/module-240-50.mp4
- Dias cours magistraux, syllabus TP, bases de données, codes informatiques. Site web auto-apprentissage.
- Dias cours magistraux, syllabus TP, bases de données, codes informatiques. Site web auto-apprentissage.