d'enseignement
probabilités, bases de l'inférence statistique, principes et pratique des méthodes classiques pour des données
continues (régression, analyse de la variance) et discrètes (tests d'ajustement, tables de contingence), utilisation
d'un logiciel pour la mise en oeuvre de ces analyses dans des situations expérimentales classiques.
charges prévoit un module de modélisation linéaire et un module d'analyse multidimensionnelle.
Vu son insertion dans le programme BOE, le cours puisera ses exemples surtout dans le domaine écologique.
d'apprentissage
A la fin de cette unité d’enseignement, l’étudiant est capable de : | |
1 | L¿objectif est qu¿au terme de ce cours, les étudiants : |
La contribution de cette UE au développement et à la maîtrise des compétences et acquis du (des) programme(s) est accessible à la fin de cette fiche, dans la partie « Programmes/formations proposant cette unité d’enseignement (UE) ».
– Régression linéaire simple et muliple, y compris l'AN(C)OVA
– Modèles linéaires généralisées: régression logistique et régression de Poisson
– Modèles linéaires mixtes
– Mise en oeuvre dans le logiciel R
Module 2 (UNamur): Exploration de données multivariées
– Matrices de données
– Techniques utiles de l’algèbre matricielle
– Régression linéaire multiple (sans inférence)
– Analyse en composantes principales
– Classification
– Analyse canonique des correspondances
– Mise en oeuvre dans R et dans Excel.
Pour le module 2 (UNamur), des séances d’auto-apprentissage et des classes inversées ; les consignes sont données à la première heure de cours.
des acquis des étudiants
Module 1 (UCLouvain): examen écrit pendant la session d'examens. Test dispensatoire pour une partie de l'examen vers la fin des cours.
Module 2 (UNamur): Evaluation continue durant les classes inversées (50%) : réalisation d’analyses multivariées en Excel et interprétation des résultats. Evaluation durant les séances de TP (50%) : réalisation d’analyses multivariées en R et interprétation des résultats. Pas de seconde session.
en ligne
Module 1 (UCLouvain): Code informatique du livre conseillé: http://highstat.com/index.php/analysing-ecological-data
Module 2 (UNamur)
– Site web auto-apprentissage: http://webapps.fundp.ac.be/umdb/biostats2017/
– Capsules video:
http://medias.save.fundp.ac.be/videos/webcampus/2016-cours-biostatistique-Depiereux/module-200-10.mp4
http://medias.save.fundp.ac.be/videos/webcampus/2016-cours-biostatistique-Depiereux/module-210-10.mp4
http://medias.save.fundp.ac.be/videos/webcampus/2016-cours-biostatistique-Depiereux/module-220-10.mp4
http://medias.save.fundp.ac.be/videos/webcampus/2016-cours-biostatistique-Depiereux/module-220-20.mp4
http://medias.save.fundp.ac.be/videos/webcampus/2016-cours-biostatistique-Depiereux/module-220-30.mp4
http://medias.save.fundp.ac.be/videos/webcampus/2016-cours-biostatistique-Depiereux/module-230-10.mp4
http://medias.save.fundp.ac.be/videos/webcampus/2017-cours-biostatistique-Depiereux/module-240-10.mp4
http://medias.save.fundp.ac.be/videos/webcampus/2017-cours-biostatistique-Depiereux/module-240-20.mp4
http://medias.save.fundp.ac.be/videos/webcampus/2017-cours-biostatistique-Depiereux/module-240-30.mp4
http://medias.save.fundp.ac.be/videos/webcampus/2017-cours-biostatistique-Depiereux/module-240-40.mp4
http://medias.save.fundp.ac.be/videos/webcampus/2017-cours-biostatistique-Depiereux/module-240-50.mp4
- Dias cours magistraux, syllabus TP, bases de données, codes informatiques. Site web auto-apprentissage.
- Dias cours magistraux, syllabus TP, bases de données, codes informatiques. Site web auto-apprentissage.
en charge