Mathematics 1

lfsab1101a  2017-2018  Louvain-la-Neuve

Mathematics 1
6 credits
30.0 h + 30.0 h
Q1
Teacher(s)
Ben-Naoum Abdou Kouider coordinator; Pereira Olivier; Verleysen Michel; Wertz Vincent;
Language
French
Prerequisites
None
Main themes
  • Mathematical proof techniques.
  • Analysis : functions of a real variable, first order      differential equations.
  • Linear Algebra : matrix calculus and linear equations.
  • Discrete mathematics : combinatorics, recurrence equations and graphs.
  • Modelling of simple problems, and problem solving using the methods cited above.
Aims

At the end of this learning unit, the student is able to :

1

Following this course, the students will be able to : Content-oriented objectives :

  • manipulate real functions of a single variable;
  • master the basic notions of linear algebra;
  • model simple phenomena using first order differential equations, and solve these equations;
  • formulate and write short proofs with the required rigor;
  • read critically a mathematical statement;
  • illustrate statements with examples and counterexamples;
  • understand the various ways of mathematical proving techniques.
 

The contribution of this Teaching Unit to the development and command of the skills and learning outcomes of the programme(s) can be accessed at the end of this sheet, in the section entitled “Programmes/courses offering this Teaching Unit”.
Content
  • Sets, relations, functions, and main proof techniques.
  • Functions of a single real variable : limits, continuity, derivatives, integration, Taylor polynomials.
  • Sequences and series.
  • First order differential equations.
  • Linear algebra : linear equation systems, matrix calculus, vector spaces on a field, linear applications
  • Discrete mathematics: combinatorics, recurrence, graphs.
Teaching methods
Lectures in auditorium, supervised exercise and problem sessions, and unsupervised assignments.
Evaluation methods
Written examination about the theory, exercises and problems inspired from the course. The examination is closed book. A particular attention will be devoted to the clarity of the writing, the precision of the answers, including in the use of mathematical notations, and in the justification of the solutions.
A written, closed-book, test is organized during the semester.
The contribution of this test to the final grade will be as indicated on the Moodle website of the course.
Bibliography
Livre « Calculus : a complete course, Robert A. Adams, Christopher Essex », Pearson (dernière édition).
Syllabus d'algèbre et de mathématiques discrètes.
Syllabus d'exercices et probèmes.
Faculty or entity
BTCI


Programmes / formations proposant cette unité d'enseignement (UE)

Title of the programme
Sigle
Credits
Prerequisites
Aims
Bachelor in Engineering : Architecture