d'enseignement
en ligne
Les documents du cours (notes, transparents, énoncés des exercices et des devoirs) sont disponibles sur Moodle.
Ce cours suppose le suivi au préalable d'un cours de base en optimisation (tel que le cours LINMA1702) ainsi que certaines notions élémentaires d'analyse réelle et d'algèbre linéaire (correspondant aux cours LFSAB1101 et LFSAB1102).
Optimisation linéaire, optimisation convexe (y compris l'optimisation structurée conique) ; dualité et applications ; méthodes de point intérieur ; méthodes du premier ordre, méthodes de région de confiance ; pratique d'un langage de modélisation.
d'apprentissage
Eu égard au référentiel AA, ce cours contribue au développement, à l'acquisition et à l'évaluation des acquis d'apprentissage suivants :
AA1.1, AA1.2, AA1.3
AA2.1, AA2.2, AA2.4, AA2.5
AA5.3, AA5.5
Plus précisément, au terme du cours, l'étudiant sera capable de :
- Reconnaître un problème pouvant être formulé ou converti sous forme linéaire, convexe, ou conique
- Exploiter le concept de dualité pour la compréhension d'un problème, la production de certificats d'optimalité ou d'impossibilité, pour l'analyse de sensibilité ou la formulation de problèmes robustes
- Décrire, analyser et Implémenter des algorithmes de résolution avancés dans les domaines de l'optimisation linéaire, convexe ou non-linéaire
- Utiliser un langage de modélisation pour formuler et résoudre un problème d'optimisation, en exploitant la séparation entre modèle, données et algorithme de résolution
Acquis d'apprentissage transversaux :
- utiliser un logiciel de calcul numérique de type Matlab ou de modélisation de type AMPL
- effectuer en petit groupe un travail de formulation, d'analyse et/ou de résolution de modèles d'optimisation
- rendre compte par écrit d'un travail de formulation, d'analyse et/ou de résolution de modèles d'optimisation.
La contribution de cette UE au développement et à la maîtrise des compétences et acquis du (des) programme(s) est accessible à la fin de cette fiche, dans la partie « Programmes/formations proposant cette unité d’enseignement (UE) ».
des acquis des étudiants
Les étudiants sont évalués individuellement et par écrit sur base des objectifs énoncés plus haut. En outre les étudiants réalisent une série de devoirs par petits groupes, comptabilisés dans la note finale.
Le cours est organisé autour de séances de cours, de séances d'exercices supervisées et de laboratoires en salle informatique (pour la pratique du langage AMPL).
Modèles : Techniques avancées de modélisation linéaire et convexe ; théorèmes de l'alternative et dualité linéaires et convexes ; analyse de sensibilité et optimisation robuste ; optimisation conique (programmations linéaire, conique quadratique et sémidéfinie), dualité Lagrangienne
Méthodes : méthode de point intérieur pour l'optimisation linéaire (suivi de chemin à pas courts et à pas longs) et pour l'optimisation convexe (barrières auto-concordantes), méthodes du premier ordre pour l'optimisation convexe, étude de la complexité algorithmique ; méthode de région de confiance ; découverte et utilisation du langage de modélisation AMPL.
Applications traitées dans des domaines variés tels que l'analyse de données, le machine learning, la finance, l'optimisation de formes ou de structures mécaniques, ou les télécommuncations.
- Convex Optimization, Stephen Boyd et Lieven Vandenberghe, Cambridge University Press, 2004.
- Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications, Aharon Ben-Tal, Arkadi Nemirovski, SIAM 2001.
- Interior point methods for linear optimization, Cornelis Roos, Tamas Terlaky, Jean-Philippe Vial, Springer, 2006.
- Introductory Lectures on Convex Optimization: A Basic Course, Yurii Nesterov, Kluwer, 2004.
- Trust-region methods, A. Andrew R. Conn, Nicholas I. M. Gould, Ph. Philippe L. Toint, SIAM, 2000.
en charge