d'enseignement
L'étudiant devrait avoir une bonne connaissance de la théorie de probabilité et de statistique. Aussi, une bonne maitrîse de SAS ou Splus (ou un autre logiciel avancé) est nécessaire.
d'apprentissage
A. Eu égard au référentiel AA du programme de master en statistique, orientation biostatistique, cette activité contribue au développement et à l'acquisition de manière prioritaire des AA 1.4, 1.5, 2.1, 2.2, 4.1, 4.2 et 4.5.
Eu égard au référentiel AA du programme de master en statistique, orientation générale, cette activité contribue au développement et à l'acquisition de manière prioritaire des AA 1.4, 1.5, 2.1, 2.2, 4.1, 4.2
B. A l'issue de ce cours, l'étudiant sera familiarisé avec les concepts et modèles de base en analyse de survie. En outre, l'étudiant sera capable d'analyser des données réelles à l'aide de logiciels.
La contribution de cette UE au développement et à la maîtrise des compétences et acquis du (des) programme(s) est accessible à la fin de cette fiche, dans la partie « Programmes/formations proposant cette unité d’enseignement (UE) ».
des acquis des étudiants
L'évaluation comprend un examen oral (pour tester la compréhension globale du cours) et un projet sur ordinateur (analyse de données réelles).
Le cours comprend des exposés magistraux et des séances d'exercices.
- Introduction aux concepts de base (commes les mécanismes de censure et troncature, certaines fonctions de survie paramétriques courantes en analyse de survie,...)
- Estimation nonparamétrique des quantités de base (l'estimateur de Kaplan-Meier de la fonction de survie, l'estimateur de Nelson-Aalen de la fonction de hasard cumulée,...), le développement de certaines propriétés (asymptotiques) de ces estimateurs, et des tests d'hypothèse concernant l'égalité de deux ou plusieurs courbes de survie
- Modèle à hasards proportionnels (estimation des composantes du modèle, tests d'hypothèse, sélection de variables explicatives, validation du modèle,...)
- Modèle à hasards accélérés (estimation des paramètres du modèle, tests d'hypothèse, sélection du modèle, validation du modèle,...)
- Cox, D.R. et Oakes, D. (1984). Analysis of survival data, Chapman and Hall, New York.
- Hougaard, P. (2000). Analysis of multivariate survival data. Springer, New-York.
- Klein, J.P. et Moeschberger, M.L. (1997). Survival analysis, techniques for censored and truncated data, Springer, New York.
Les notes de cours sont distribuées lors de la première séance du cours.
en charge
Programmes / formations proposant cette unité d'enseignement (UE)
d'apprentissage