Stochastic modelling

LINMA2470  2016-2017  Louvain-la-Neuve

Stochastic modelling
5.0 crédits
30.0 h + 22.5 h
2q

Enseignants
Chevalier Philippe;
Langue
d'enseignement
Anglais
Prérequis

Un cours de probabilités, des compétences en modélisation mathématique

Thèmes abordés
Introduction aux modèles stochastiques en recherche opérationnelle. Etude des processus de renouvellement ordinaire, en particulier les chaînes de Markov en temps discret et continu et les processus de décision avec gains. Applications aux problèmes de stocks, files d'attente, processus de branchement, promenades aléatoires, etc...
Acquis
d'apprentissage

À l'issue de ce cours, l'étudiant sera en mesure de :

  • Connaître les propriétés des processus stochastique avec des états discrets, en particulier les processus de renouvellement, les processus markoviens et les processus de décision markoviens.
  • Comprendre l'impact des phénomènes aléatoires et de la variabilité sur le comportement d'un système en régime transitoire et stationnaire.
  • Analyser et calculer les propriétés de différents systèmes de files d'attente (stationnaires et non-stationnaires).
  • Utiliser différents types de processus stochastiques pour représenter un système comportant des phénomènes aléatoires.
  • Optimiser des systèmes non-déterministes à l'aide de processus de décision markoviens.
  • Modéliser différents systèmes sujets à de la congestion à l'aide de modèles de file d'attente.
  • Mieux appréhender des situations où il faut prendre des décisions avec de l'incertitude.

La contribution de cette UE au développement et à la maîtrise des compétences et acquis du (des) programme(s) est accessible à la fin de cette fiche, dans la partie « Programmes/formations proposant cette unité d’enseignement (UE) ».

Modes d'évaluation
des acquis des étudiants

Les étudiants seront évalués individuellement et par écrit sur base des objectifs particuliers annoncés précédemment.
L'examen écrit portera sur des exercices d'application de la matière. Lors des séances d'exercice de nombreuses questions d'examens d'années antérieures sont vues.
Les étudiants réaliseront aussi en groupe un modèle de simulation visant à analyser et comprendre le comportement d'un système stochastique avec congestion.

Méthodes d'enseignement

Le cours est donné de manière ex-catedra. Il y a 11 séances d'exercices qui permettent aux étudiants d'appliquer la matière et de s'entrainer sur des exercices des examens des années antérieures. Un cours est consacré aux présentation par les étudiants de leurs projets de simulation et un cours est consacré à la présentation par d'une application des concepts du cours par une personne du monde professionnel.

Contenu
  • Le processus de Poisson et ses propriétés
  • Chaînes de Markov avec un nombre fini d'états
  • Processus de renouvellement ordinaires et variables aléatoires qui y sont reliées. Le concept de temps d'arrêt
  • Chaines de Markov avec un nombre infini d'états
  • La notion de réversibilité
  • Processus de Markov
  • Processus de naissance et de mort
  • Théorie des files d'attente et des réseaux de files d'attente
  • Modèle fluide de files d'attentes
  • Applications diverses, en particulier aux modèles de stock, de remplacement, de fiabilité, de modélisation d'atelier.
Bibliographie

Lecture recommandée : livre "Stochastic Processes: Theory for applications" de R. Gallagher, 2013, disponible en ligne : http://www.rle.mit.edu/rgallager/notes.htm

Faculté ou entité
en charge


Programmes / formations proposant cette unité d'enseignement (UE)

Intitulé du programme
Sigle
Crédits
Prérequis
Acquis
d'apprentissage
Master [120] : ingénieur civil en mathématiques appliquées
5
-

Master [120] en sciences informatiques
5
-

Master [120] : ingénieur civil électricien
5
-

Master [120] : ingénieur civil en informatique
5
-

Master [120] en ingénieur de gestion
5
-

Master [120] en ingénieur de gestion
5
-