Contribution of the course to learning outcomes in the Bachelor in Mathematics programme. By the end of this activity, students will have made progress in:
- Recognise and understand a basic foundation of mathematics. In particular:
-- Choose and use the basic tools of calculation to solve mathematical problems.
-- Recognise the fundamental concepts of important current mathematical theories.
-- Establish the main connections between these theories, analyse them and explain them through the use of examples.
- Identify, by use of the abstract and experimental approach specific to the exact sciences, the unifying features of different situations and experiments in mathematics or in closely related fields.
- Show evidence of abstract thinking and of a critical spirit. In particular:
-- Argue within the context of the axiomatic method.
-- Recognise the key arguments and the structure of a proof.
-- Construct and draw up a proof independently.
-- Distinguish between the intuition and the validity of a result and the different levels of rigorous understanding of this same result.
Learning outcomes specific to the course. By the end of this activity, students will be able to:
- Master the different types of convergence for numerical series and series of functions.
- Master the notion of a power series, the calculation of its radius of convergence and the link with the notions of analytic and holomorphic functions.
- Use the fundamental principles of the theory of analytic functions: identity theorem, principle of the isolated zeros, principle of analytic continuation and maximum modulus principle.
- Determine the isolated singular points of an analytic function, compute the Laurent expansion in the neighborhood of an isolated singular point.
- Master the residue calculus, its application to the calculation of definite integrals and the determination of the number of zeros and poles of a meromorphic function.
|