<- Archives UCL - Programme d'études ->



Mathematical structures for spaces [ LICAR1111 ]


4.0 crédits ECTS  30.0 h + 20.0 h   2q 

Teacher(s) Lambrechts Pascal ; Buysse Martin ;
Language French
Place
of the course
Louvain-la-Neuve
Main themes

1. Euclidean geometry and its generalizations. In particular curves (curvature, torsion, special curves), surfaces (curvatures, ruled surfaces), 3D objects (regular polyhedra, convex geometry, intersection of 3D objects) 2. The projective extension of euclidean geometry (projective space, projective transformations, duality, ...) 3. Introduction to other geometries : non-euclidean geometry and the axiom of parallels, topological classification of surfaces (Klein bottle, Euler characteristic, orientation), hyperbolic geometry (Escher paintings), ... 4. Forms and numbers in nature : the golden ratio and the Fibonacci numbers (properties, geometrical interest), fractals objects (constructions, fractal dimension)

Aims

1) To describe a set of mathematical tools that enable the technical geometric calculations (lengths, areas, volumes, angles,...) 2) To help students to visualize, imagine and construct new spaces

Content The different chapters of the course are : - euclidean geometry - affin geometry - projective geometry - metric curve theory - metric theory of surfaces - topology and surfaces - fractal geometry - axiomatic geometry
Other information FSAB 1101 or an equivalent course FSAB 1102 or an equivalent course
Cycle et année
d'étude
> Bachelor in Engineering : Architecture
Faculty or entity
in charge
> LOCI


<<< Page précédente