TRACKING-ERROR-BASED CONTROL OF A CHEMICAL REACTOR USING DECOUPLED DYNAMIC VARIABLE

Thanh Sang, Nguyen♠, Chee Keong, Tan♠, Ngoc Ha, Hoang★, Mohd Azlan Bin Hussain♠

♠ Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
★ Institute of Research and Development, Duy Tan University, 254 Nguyen Van Linh Road, Da Nang, Viet Nam

3rd IFAC Workshop on Thermodynamic Foundation of Mathematical Systems Theory (TFMST) Louvain-la-Neuve, 3rd – 5th July 2019
Outline

1 Introduction
- Stabilization problem of continuous stirred tank reactor (CSTR)
- Control Strategy

2 Preliminaries
- An overview of port-Hamiltonian representation
- Tracking-error-based control via quadratic affine PH representation
- CSTR modeling

3 Main Results
- Hamiltonian view on the decoupled model of CSTR
- Controller design
- Simulations and Discussion

4 Conclusion and Future Work
- Conclusion
- Future Work
Motivation, challenges and objective

Consider a first-order reaction system:

\[\nu_A A \rightarrow \nu_B B \]

taking place in a continuous stirred tank reactor (CSTR)

Motivation

The continuous operation via CSTR is common in the industry

Challenges

- High nonlinearity due to reaction kinetics and thermal effects
- Exhibition of multiplicity behavior under certain conditions
- Instability if operated without controller
Motivation, challenges and objective

Consider a first-order reaction system:

\[\nu_A A \rightarrow \nu_B B \]

taking place in a continuous stirred tank reactor (CSTR)

Motivation

The continuous operation via CSTR is common in the industry

Challenges

- **High nonlinearity** due to reaction kinetics and thermal effects
- Exhibition of multiplicity behavior under certain conditions
- Instability if operated without controller
Motivation, challenges and objective

Consider a first-order reaction system:

\[\nu_A A \rightarrow \nu_B B \]

taking place in a continuous stirred tank reactor (CSTR)

Motivation

The continuous operation via CSTR is common in the industry

Challenges

- High nonlinearity due to reaction kinetics and thermal effects

- Exhibition of multiplicity behavior under certain conditions

- Instability if operated without controller
Motivation, challenges and objective

Consider a first-order reaction system:

$$\nu_A A \rightarrow \nu_B B$$

taking place in a continuous stirred tank reactor (CSTR)

Motivation
The continuous operation via CSTR is common in the industry

Challenges

- **High nonlinearity** due to reaction kinetics and thermal effects
- Exhibition of *multiplicity behavior* under certain conditions
- **Instability** if operated without controller
Motivation, challenges and objective

Objective

Stabilization of the first-order reaction system at desired set point (including unstable-middle steady state)
Motivation, challenges and objective

Objective

Stabilization of the first-order reaction system at desired set point (including *unstable-middle steady state*)
Concepts of Reaction Variant/Invariants

- Dynamics of reaction system can be partitioned into 2 parts by a linear transformation: (i) reaction variant (ii) invariant

- Reaction variant:
 - Having the same dimension as the number of linearly independent reactions
 - Containing the information of nonlinear reaction kinetics

- Invariant:
 - Being independent of reaction kinetics
 - Asymptotically converging to origin without control

- These features will ease the control design of tracking-error method in PH representation
Concepts of Reaction Variant/Invariants

- Dynamics of reaction system can be partitioned into 2 parts by a linear transformation: (i) reaction variant (ii) invariant

- **Reaction variant:**
 - Having the same dimension as the number of linearly independent reactions
 - Containing the information of nonlinear reaction kinetics

- **Invariant:**
 - Being independent of reaction kinetics
 - Asymptotically converging to origin without control

- These features will ease the control design of tracking-error method in PH representation
Concepts of Reaction Variant/Invariants

- Dynamics of reaction system can be partitioned into 2 parts by a linear transformation: (i) reaction variant (ii) invariant

- **Reaction variant:**
 - Having the same dimension as the number of linearly independent reactions
 - Containing the information of nonlinear reaction kinetics

- **Invariant:**
 - Being independent of reaction kinetics
 - Asymptotically converging to origin without control

- These features will ease the control design of tracking-error method in PH representation
Dynamics of reaction system can be partitioned into 2 parts by a linear transformation: (i) reaction variant (ii) invariant

Reaction variant:
- Having the same dimension as the number of linearly independent reactions
- Containing the information of nonlinear reaction kinetics

Invariant:
- Being independent of reaction kinetics
- Asymptotically converging to origin without control

These features will ease the control design of tracking-error method in PH representation
Control Scheme

- The variants/invariants-based model is derived by a suitable linear transformation.
- The transformed model is then formulated into the quadratic affine PH representation.
- The tracking-error-based method is applied to obtain the controllers.
Control Scheme

- The variants/invariants-based model is derived by a suitable linear transformation.
- The transformed model is then formulated into the quadratic affine PH representation.
- The tracking-error-based method is applied to obtain the controllers.
Control Scheme

- The variants/invariants-based model is derived by a suitable linear transformation.
- The transformed model is then formulated into the quadratic affine PH representation.
- The tracking-error-based method is applied to obtain the controllers.
Port Hamiltonian (PH) Formulation With Dissipation

Let consider a lumped multivariable nonlinear system

\[
\frac{dx}{dt} = f(x) + g(x)u, \quad x(t = 0) = x_0 \quad \text{and} \quad y = h(x)
\]

where

- \(x = x(t) \) is the state vector in the operating region \(\mathbb{D} \in \mathbb{R}^n \)
- \(f(x) \in \mathbb{R}^n \) expresses the smooth (nonlinear) function with respect to \(x \)
- The input-state map and the control input are represented by \(g(x) \in \mathbb{R}^{n \times m} \) and \(u \in \mathbb{R}^m \) respectively
- \(y \) (or \(h(x) \)) \(\in \mathbb{R}^m \) is the output of the system
Port Hamiltonian (PH) Formulation With Dissipation

Let consider a lumped multivariable nonlinear system

$$\frac{dx}{dt} = f(x) + g(x)u, \quad x(t = 0) = x_0 \quad \text{and} \quad y = h(x)$$

If $f(x)$ satisfies the separability condition, this system can be formulated into PH representation:

$$\frac{dx}{dt} = \left[J(x) - R(x) \right] \frac{\partial \mathcal{H}(x)}{\partial x} + g(x)u \quad \text{and} \quad y = g(x)\top \frac{\partial \mathcal{H}(x)}{\partial x}$$

where

- $J(x) = -J^\top(x)$ is the interconnection matrix
- $R(x) = R^\top(x) \geq 0$ is the damping matrix
- The Hamiltonian $\mathcal{H}(x) : \mathbb{R}^n \rightarrow \mathbb{R}$ is the storage function
Port Hamiltonian (PH) Formulation With Dissipation

Let consider a lumped multivariable nonlinear system

\[\frac{dx}{dt} = f(x) + g(x)u, \quad x(t = 0) = x_0 \quad \text{and} \quad y = h(x) \]

If \(f(x) \) satisfies the separability condition, this system can be formulated into PH representation:

\[\frac{dx}{dt} = \left[J(x) - R(x) \right] \frac{\partial \mathcal{H}(x)}{\partial x} + g(x)u \quad \text{and} \quad y = g(x) \top \frac{\partial \mathcal{H}(x)}{\partial x} \]

Power-Balance Equation or Dissipation Inequality

Because \(R(x) \) is positive semi-define, the inequality is fulfilled

\[\frac{d\mathcal{H}(x)}{dt} = - \left[\frac{\partial \mathcal{H}(x)}{\partial x} \right] \top R(x) \frac{\partial \mathcal{H}(x)}{\partial x} + u \top y \leq u \top y \]
The quadratic affine PH Representation

Assume that

- The nonlinear dynamics is rendered into PH with a priori **quadratic storage function**

\[\mathcal{H}(x) := \frac{1}{2} x^\top R_d i x \]

- \(x_d \) is a **reference trajectory** passing through a set-point or containing the desired profile
The quadratic affine PH Representation

Assume that

- The nonlinear dynamics is rendered into PH with a priori quadratic storage function
 \[\mathcal{H}(x) := \frac{1}{2} x^\top R_{di} x \]

- \(x_d \) is a reference trajectory passing through a set-point or containing the desired profile
Proposition 1

If the dynamics of x_d is governed by

$$\frac{dx_d}{dt} = \left[J(x) - R(x) \right] \frac{\partial \mathcal{H}(x_d)}{\partial x_d} + R_I(x) \frac{\partial \mathcal{H}(e)}{\partial e} + g(x)u$$

where

- $e = x - x_d$ is the error state vector
- $\mathcal{H}(e) = \frac{1}{2} e^\top R_d e$
- $R_I(x)$ is assigned suitably such that

$$\left(R(x) + R_I(x) \right) = \left(R(x) + R_I(x) \right)^\top > 0$$

then x converge exponentially to x_d
Mathematical model

Let reconsider the first-order reaction system $\nu_A A \rightarrow \nu_B B$, taking place in a CSTR.

Under some modeling assumptions, the mathematical model is given

$$
\begin{align*}
\frac{dH}{dt} &= d(H_I - H) + \dot{Q}_J \\
\frac{dN}{dt} &= d(N_I - N) + \nu r_v V
\end{align*}
$$

- H and H_I are the enthalpy of outlet and inlet, respectively
- $d = \frac{F}{V}$ is the dilution rate and $\dot{Q}_J = \lambda (T_J - T)$ is heat exchange
- $N_I = (N_{AI}, N_{BI})^\top$ and $N = (N_A, N_B)^\top$ are the vectors of inlet and outlet molar numbers, respectively
- $\nu = (\nu_A, \nu_B)^\top = (-1, 1)^\top$ is the vector of stoichiometric coefficients
Mathematical model

Let reconsider the first-order reaction system $\nu_A A \rightarrow \nu_B B$, taking place in a CSTR. Under some modeling assumptions, the mathematical model is given

\[
\begin{align*}
\frac{dH}{dt} &= d(H_I - H) + \dot{Q}_J \\
\frac{dN}{dt} &= d(N_I - N) + \nu r_v V
\end{align*}
\]

- H and H_I are the enthalpy of outlet and inlet, respectively
- $d = \frac{F}{V}$ is the dilution rate and $\dot{Q}_J = \lambda (T_J - T)$ is heat exchange
- $N_I = (N_{AI}, N_{BI})^\top$ and $N = (N_A, N_B)^\top$ are the vectors of inlet and outlet molar numbers, respectively
- $\nu = (\nu_A, \nu_B)^\top = (-1, 1)^\top$ is the vector of stoichiometric coefficients
Mathematical model

Let reconsider the first-order reaction system \(\nu_A A \rightarrow \nu_B B \), taking place in a CSTR.

Under some modeling assumptions, the mathematical model is given

\[
\begin{align*}
\frac{dH}{dt} &= d(H_I - H) + \dot{Q}_J \\
\frac{dN}{dt} &= d(N_I - N) + \nu r \nu V
\end{align*}
\]

- \(H \) and \(H_I \) are the enthalpy of outlet and inlet, respectively
- \(d = \frac{F}{V} \) is the dilution rate and \(\dot{Q}_J = \lambda (T_J - T) \) is heat exchange
- \(N_I = (N_{AI}, N_{BI})^\top \) and \(N = (N_A, N_B)^\top \) are the vectors of inlet and outlet molar numbers, respectively
- \(\nu = (\nu_A, \nu_B)^\top = (-1, 1)^\top \) is the vector of stoichiometric coefficients
The decoupled model of CSTR

Proposition 2

The state transformation $\mathcal{M} = T N$ transforms the reaction system dynamics into reaction variant and reaction invariant dynamics modes

\[
\begin{align*}
\frac{dH}{dt} &= d(H_I - H) + \dot{Q}_J \\
\frac{d\mathcal{M}}{dt} &= d(M_I - \mathcal{M}) - k(T) \mathcal{M} \\
\frac{d\bar{\mathcal{M}}}{dt} &= d(M_I - \bar{\mathcal{M}})
\end{align*}
\]

where the temperature in the reaction kinetics $k(T)$ is now a nonlinear function of $(H, \bar{\mathcal{M}}, \mathcal{M})$.
The decoupled model of CSTR

Proposition 2

The reaction-variant/invariant-based model expresses a quadratic affine port-Hamiltonian form with $x = (H, \overline{M}, \underline{M})^\top$ as follows,

$$\frac{dx}{dt} = \left[J(x) - R(x) \right] \frac{\partial \mathcal{H}}{\partial x} + g(x, u)$$

- The storage function $\mathcal{H}(x) = \frac{1}{2} x^\top x$ and $g(x, u) = \begin{pmatrix} dH_1 + \dot{Q}_J \\ d\overline{M}_I \\ d\underline{M}_I \end{pmatrix}$

- Structured matrices: $R(x) = \text{diag}\left(d, d + k(T), d\right)$ and $J(x) = 0_{3 \times 3}$
By using Proposition 2, the control design in Proposition 1 can be applied easily.

Firstly, the representation of the reference trajectory \(x_d = (x_{1d}, x_{2d}, x_{3d}) \) is derived

\[
\begin{align*}
\frac{dH_d}{dt} &= -dH_d + R_{I1}(H - H_d) + dH_1 + \dot{Q}_J \\
\frac{d\bar{M}_d}{dt} &= - (d + k)\bar{M}_d + R_{I2}(\bar{M} - \bar{M}_d) + d\bar{M}_1 \\
\frac{d\bar{M}_d}{dt} &= -d\bar{M}_d + R_{I3}(\bar{M} - \bar{M}_d) + d\bar{M}_1
\end{align*}
\]

where \(R_{I1}, R_{I2} \) and \(R_{I3} \) are the positive element of \(R_I(x) = \text{diag}(R_{I1}, R_{I2}, R_{I3}) \)
By using Proposition 2, the control design in Proposition 1 can be applied easily.

Firstly, the representation of the reference trajectory \(x_d = (x_{1d}, x_{2d}, x_{3d}) \) is derived

\[
\begin{align*}
\frac{dH_d}{dt} &= -dH_d + R_{I1}(H - H_d) + dH_1 + \dot{Q}_J \\
\frac{d\mathcal{M}_d}{dt} &= -(d + k)\mathcal{M}_d + R_{I2}(\mathcal{M} - \mathcal{M}_d) + d\mathcal{M}_1 \\
\frac{d\mathcal{M}_d}{dt} &= -d\mathcal{M}_d + R_{I3}(\mathcal{M} - \mathcal{M}_d) + d\mathcal{M}_1
\end{align*}
\]

where \(R_{I1}, R_{I2} \) and \(R_{I3} \) are the positive element of \(R_I(x) = \text{diag}(R_{I1}, R_{I2}, R_{I3}) \)
Internal dynamics of feedback laws

1. Secondly, desirable reference trajectories are assigned

\[
\frac{dH_d}{dt} = k_1 (H^e - H_d), \quad \frac{d\overline{M}}{dt} = k_2 (\overline{M}^e - \overline{M}_d), \quad \frac{d\overline{M}_d}{dt} = k_3 (\overline{M}^e - \overline{M}_d)
\]

where

- \(k_1, k_2\) and \(k_3\) are the gains of controller
- \(\overline{M}^e = (\overline{M}^e, \overline{M}^e) = \mathcal{T} (N^e_A, N^e_B)\) and \((H^e, N^e_A, N^e_B)\) are the desired steady states

2. Thirdly, internal dynamics of feedback laws are obtained

\[
\dot{Q}_J = k_1 (H^e - H_d) + dH_d - R_{I1} (H - H_d) - dH_1
\]

\[
\overline{M}_1 = \frac{1}{d} \left[k_2 (\overline{M}^e - \overline{M}_d) + (d + k) \overline{M}_d - R_{I2} (\overline{M} - \overline{M}_d) \right]
\]

\[
\overline{M}_1 = \frac{1}{d} \left[k_3 (\overline{M}^e - \overline{M}_d) + d \overline{M}_d - R_{I3} (\overline{M} - \overline{M}_d) \right]
\]
Secondly, desirable reference trajectories are assigned

\[
\frac{dH_d}{dt} = k_1 (H^e - H_d), \quad \frac{d\bar{M}_d}{dt} = k_2 (\bar{M}^e - \bar{M}_d), \quad \frac{dM_d}{dt} = k_3 (M^e - M_d)
\]

where
- \(k_1, k_2\) and \(k_3\) are the gains of controller
- \(\bar{M}^e = (\bar{M}^e_A, \bar{M}^e_B) = \mathcal{T} (N^e_A, N^e_B)\) and \((H^e, N^e_A, N^e_B)\) are the desired steady states

Thirdly, internal dynamics of feedback laws are obtained

\[
\dot{Q}_J = k_1 (H^e - H_d) + dH_d - R_{I1} (H - H_d) - dH_1 \\
\bar{M}_1 = \frac{1}{d} \left[k_2 (\bar{M}^e - \bar{M}_d) + (d + k) \bar{M}_d - R_{I2} (\bar{M} - \bar{M}_d) \right] \\
\bar{M}_1 = \frac{1}{d} \left[k_3 (\bar{M}^e - \bar{M}_d) + d\bar{M}_d - R_{I3} (\bar{M} - \bar{M}_d) \right]
\]
Fourthly, the actual controllers (or the physical input): T_J, N_{AI} and N_{BI} can be derived by

$$T_J = T + \frac{1}{\lambda} \dot{Q}_J$$

$$N_I = \mathcal{T}^{-1} \mathcal{M}_I$$

where

$$\mathcal{T}^{-1} = \begin{pmatrix} -1 & 0 \\ 1 & 1 \end{pmatrix}$$

$$\mathcal{M}_I = (\mathcal{M}_I, \mathcal{M}_I)$$
All of system trajectories converge exponentially to the point $x^e \equiv P_2$

The system is stabilized in the desired equilibrium point P_2
All of system trajectories converge exponentially to the point $x^e \equiv P_2$

\implies The system is stabilized in the desired equilibrium point P_2
The dynamics and amplitude of \((T_J, N_{AI}, N_{BI})\) are physically admissible.
Main contributions

- Obtain the reaction-variant/invariant-based model by a linear transformation

- Formulate this transferred model into a quadratic affine PH representation

- Apply the tracking-error-based method in the framework of passivity theory
Future work

- Exploit the model reduction via the reaction variant/invariant for the control design and state reconstruction

- Extend the proposed control design method to other nonlinear processes
Thank You for Your Attention