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Different learning algorithms for binary classification have been proposed for the
minimization of the following learning objective over the class of linear functions,
H = {h : x 7→ ⟨w,x⟩} :

L̂m(S,w) =
1

m

∑
(x,y)∈S

ℓ(h(x), y) +
λ

2
∥w∥2, (1)

where S = (xi, yi)1≤i≤m is a training set of size m, x ∈ X ⊆ Rd a vector
representation of an observation, y ∈ {−1,+1} its associated class label, and ℓ an
instantanious loss (called the hing loss) defined as :

ℓ(h(x), y) = max(0, 1− yh(x)). (2)

In the following we will analysis the algorithm called PEGASOS (Primal Esti-
mated sub-Gradient SOlver for SVM)1 which procedure is summarized below.

Algorithm 1 Pegasos
1: Input: Training set S = (xi, yi)1≤i≤m, constant λ > 0 and maximum number

of iterations T
2: Initialize: Set w(1) ← 0
3: for t = 1, 2, ..., T do
4: Set S+

t = {(x, y) ∈ S; y⟨w(t),x⟩ < 1}
5: Set ηt = 1

λt

6: Update w(t+1) ← (1− ληt)w
(t) + ηt

m

∑
(x,y)∈S+

t
yx

7: end for
8: Output: w(T+1)

Begining from a null weight vector, the algorithm iteratively updates the weights
over the subset of misclassified training examples S+

t by applying the following
rule :

∀t,w(t+1) ← (1− ληt)w
(t) +

ηt
m

∑
(x,y)∈S+

t

yx, (3)

1S. Shalev-Shwartz, Y. Singer, N. Srebro and A. Cotter. Primal Estimated sub-Gradient SOlver
for SVM (Pegasos) Mathematical Programming March 2011, Volume 127, Issue 1, pp 330
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where, ηt = 1
λt

is the learning rate. In the following we will analysis the conver-
gence property of the algorithm.

1. For an observation (x, y) and a prediction function h ∈ H, why the sign of
the product yh(x) = y⟨w,x⟩ is an indicator of good/bad classification?

2. Which other learning algorithm updates the learning weights over misclassi-
fied training examples? In the case where S+

t = (xt, yt) is a singleton what
is the update rule of this other learning algorithm and what is the difference
with the one proposed in PEGASOS (3)?

3. Draw the binary classification loss ℓb : (h(x), y) 7→ 1yh(x)<0, and the hing
loss (Eq. 2) with respect to the product yh(x), i.e. the loss on the y-axis and
yh(x) on the x-axis.

4. For a given example (x, y), what does |h(x)|
∥w∥ represent?

5. Why the learning objective (1) admits a single minimizer w⋆ ∈ Rd?

6. Explain why at the first iteration, S1 is the whole training set; S1 = S?

7. Show that the update (3) follows the gradient descente rule:

∀t,w(t+1) ← w(t) − ηt∇t

where ∇t = ∇tL̂m(S,w
(t)) denotes the gradient of the learning objective

(Eq. 1) at w(t).

8. For two consecutive weights w(t) and w(t+1), show that

∥w(t) −w⋆∥2 − ∥w(t+1) −w⋆∥2 = 2ηt⟨w(t) −w⋆,∇t⟩ − η2t ∥∇t∥2

9. The objective learning function is λ-strongly convex (admitted), that is

∀u ∈ Rd, ⟨w(t) − u,∇t⟩ ≥ L̂(w(t))− L̂(u) + λ

2
∥w(t) − u∥2.

From this property and the previous question, deduce then

T∑
t=1

(
L̂(w(t))− L̂(w⋆)

)
≤

T∑
t=1

(
∥w(t) −w⋆∥2 − ∥w(t+1) −w⋆∥2

2ηt
−

λ

2
∥w(t) −w⋆∥2

)
+
1

2

T∑
t=1

ηt∥∇t∥2
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10. Show that for two consecutive iterations t and t+ 1, we have
t+1∑
j=t

(
∥w(j) −w⋆∥2 − ∥w(j+1) −w⋆∥2

2ηj
−

λ

2
∥w(j) −w⋆∥2

)
=

λ(t− 1)

2
∥w(t)−w⋆∥2−

λ(t+ 1)

2
∥w(t+2)−w⋆∥2

11. From the two previous questions deduce then

T∑
t=1

(
L̂(w(t))− L̂(w⋆)

)
≤ −λT

2
∥w(T+1) −w⋆∥2 + 1

2

T∑
t=1

ηt∥∇t∥2

≤ 1

2

T∑
t=1

ηt∥∇t∥2

12. Suppose that the learning rate ηt = 1
λt
, ∀t and that the training data are

contained in a ball of radius R; if at each iteration, we normalize the weights
w(t) such that ∥w(t)∥ ≤ 1√

λ
show that

∥∇t∥ ≤
√
λ+R

and deduce that for T ≥ 3

1

T

T∑
t=1

L̂(w(t)) ≤ 1

T

T∑
t=1

L̂(w⋆) +
c(1 + ln(T ))

2λT
,

where, c = (
√
λ+R)2

13. As the learning objective is convex we have from the Jensen inequality that

L̂

(
1

T

T∑
t=1

w(t)

)
≤ 1

T

T∑
t=1

L̂(w(t)).

Using the above inequality and question 10, prove that

L̂(w⋆) ≤ L̂(w̄) ≤ L̂(w⋆) +
c(1 + ln(T ))

2λT
,

where w̄ = 1
T

∑T
t=1w

(t), and finally

lim
t→∞

1

T

T∑
t=1

w(t) = w⋆.
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