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Different learning algorithms for binary classification have been proposed for the
minimization of the following learning objective over the class of linear functions,
H={h:x— (w,x)}:
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where S = (X;,¥;),<;<,, 15 @ training set of size m, x € X C R? a vector
representation of an observation, y € {—1, 41} its associated class label, and ¢ an
instantanious loss (called the hing loss) defined as :

((h(x),y) = max(0, 1 — yh(x)). 2)

In the following we will analysis the algorithm called PEGASOS (Primal Esti-
mated sub-Gradient SOlver for SVM)! which procedure is summarized below.

Algorithm 1 Pegasos

1: Input: Training set S = (X;, ¥; ), <;<,,> constant A > 0 and maximum number
of iterations T o
2: Initialize: Set w() < 0
fort=1,2,....T do
Set S;" = {(x,y) € S;y(w® x) < 1}
Setn, = %
Update w1 « (1 — Any)w® 4 2t D (eyest YX
end for

Output: w(T+
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Begining from a null weight vector, the algorithm iteratively updates the weights
over the subset of misclassified training examples S;” by applying the following
rule :

vt, witt — (1 — \pg)w® + Z YX, (3)
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where, 1, = % is the learning rate. In the following we will analysis the conver-
gence property of the algorithm.

1. For an observation (x, y) and a prediction function h € H, why the sign of
the product yh(x) = y(w, x) is an indicator of good/bad classification?

2. Which other learning algorithm updates the learning weights over misclassi-
fied training examples? In the case where S, = (x, ;) is a singleton what
is the update rule of this other learning algorithm and what is the difference
with the one proposed in PEGASOS (3)?

3. Draw the binary classification loss ¢, : (h(x),y) — Lyn(x)<o, and the hing
loss (Eq. 2) with respect to the product yh(x), i.e. the loss on the y-axis and
yh(x) on the z-axis.
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4. For a given example (x, y), what does represent?
5. Why the learning objective (1) admits a single minimizer w* € R%?
6. Explain why at the first iteration, S is the whole training set; S; = .S?

7. Show that the update (3) follows the gradient descente rule:
Vt, W(t—H) — W(t) — ntVt

where V, = Vtﬁm(S ,w®)) denotes the gradient of the learning objective
(Eq. 1) at w(®),

8. For two consecutive weights w®) and w(**1), show that

Iw® — w2 = D —w*||* = 2n{w —w*, V) = | Ve ]?
9. The objective learning function is A-strongly convex (admitted), that is
A A A
Vu € R (w) —u, V,) > L(w®) — L(u) + §||w(t) — ul|?.

From this property and the previous question, deduce then
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10. Show that for two consecutive iterations ¢ and £ + 1, we have

t+1 i _ w2 — j+1) _ 2 _
Z ||W(]) w II ||W('7 ) W*” _ i”w(]) _ W*IIQ _ )‘(t 1) “w(t) 7W*||27 )‘(t + 1) ||w(t+2) 7W*H2
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11. From the two previous questions deduce then
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12. Suppose that the learning rate 7, = /\t,‘v’t and that the training data are
contained in a ball of radius R; if at each iteration, we normalize the weights
w®) such that [|[w®| < - — show that
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and deduce that for 7" > 3
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where, ¢ = (VA + R)?

13. As the learning objective is convex we have from the Jensen inequality that

1 « 1 «
o = (t) il A (w®
JESIEIERS o7
t=1 t=1
Using the above inequality and question 10, prove that

c(1+1n(T))
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L(w*) < L(W) < L(w*) +

where w = £ 3" w(®), and finally



