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Abstract

This paper studies continuous-time system model sets that are spanned by "xed pole orthonormal bases. The nature of
these bases is such as to generalise the well-known Laguerre and two-parameter Kautz bases. The contribution of the
paper is to establish that the obtained model sets are complete in all of the Hardy spaces H

p
(P), 1(p(R, and the

right half plane algebra A(P) provided that a mild condition on the choice of basis poles is satis"ed. A characterisation of
how modelling accuracy is a!ected by pole choice, as well as an application example of #exible structure modelling are
also provided. ( 1999 Elsevier Science B.V. All rights reserved.

Zusammenfassung

In diesem Artikel werden Modellmengen fuK r Systeme in stetiger Zeit betrachtet, wobei diese Mengen von ortho-
normalen Basen mit "xierten Polen erzeugt werden. Diese Basen verallgemeinern die wohlbekannten Laguerre-Basen
und die zweiparametrigen Kautz-Basen. In dieser Arbeit wird gezeigt, dass die erhaltenen Modellmengen in allen
Hardy-RaK umen H

p
(P), 1(p(R, und in der Algebra A(P) der rechten Halbebene vollstaK ndig sind, vorausgesetzt, dass

eine schwache Bedingung an die Pole der Basis erfuK llt ist. Eine Charakterisierung des Ein#usses der Polvorgabe auf die
Modellgenauigkeit, sowie ein Anwendungsbeispiel der Modellierung einer #exiblen Struktur werden gegeben. ( 1999
Elsevier Science B.V. All rights reserved.

Re2 sume2

Cet article eH tudie des ensembles de modèles de systèmes à temps continu qui sont engendreH s par des bases
orthonormales à po( les "xes. La nature de ces bases est telle qu'elles geH neH ralisent les bases bien connues de Laguerre et de
Keutz à deux paramètres. La contribution de cet article est d'eH tablir que les ensembles de modèles obtenus sont complets
dans tous les espaces de Hardy H

p
(P), 1(p(R, ainsi que l'algèbre du demi-plan de droite A(P), pourvu qu'une

condition douce sur le choix des po( les des bases soit satisfaite. Nous fournissons eH galement une caracteH risation de la
fac7 on dont la preH cision du modèle est a!ecteH e par le choix des po( les, ainsi qu'un exemple d'application de modeH lisation de
structures #exibles. ( 1999 Elsevier Science B.V. All rights reserved.
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Nomenclature

C "eld of complex numbers
R "eld of real numbers
P open right half-plane Ms3C: ReMsN'0N
PM closed right half-plane Ms3C: ReMsN*0N
D open unit disk Mz3C: DzD(1N
T unit circle Mz3C: DzD"1N
H

p
(P) Hardy spaces of functions f (s) analytic

on P and such that DD f DDp
p
"

(1/2p)sup
x;0

:=
~=

D f (x#jy)Dpdy (R, 0
(p(R and DD f DD

=
"sup

s|P
D f (s)D(R

A(P) right half-plane algebra M f: f3H
=

(P) and
continuous on PM N

A(D) disk algebra M f: f analytic on D and con-
tinuous on DM N

spA linear span of A
a6 complex conjugate of a

1. Introduction

The use of orthonormal bases for the purposes of
approximation and analysis is fundamental to
many areas of applied mathematics. In particular,
in the areas of control theory, signal processing and
system identi"cation, there has long been interest
in the use of the trigonometric (FIR), &Laguerre',
and &two-parameter Kautz' bases [17,20,21].
More recently, in a discrete-time setting, this inter-
est has been revived in a string of works
[9}11,30,32,41,42,44] and this has led workers to
consider orthonormal constructions which general-
ise the Laguerre and two-parameter Kautz cases
[7,8,12,18,34]. One of these e!orts presented in
[3,31] considers the orthonormal basis functions
de"ned on DXT by a choice of numbers m

n
3D,

n"1,2,2, as

B
n
(z)O

J1!Dm
n
D2

1!m
n
z

/
n~1

(z),

(1)

/
n
(z)O

n
<
k/1

z!m
k

1!m
k
z
, /

0
(z)O1.

In the special case of m
n
"m3R this becomes the

discrete-time Laguerre basis, and in the special case
of m

n
"m3C this provides the discrete-time two-

parameter Kautz basis; see [31] for more details on
the generalising aspects of de"nition (1).

In the case of considering continuous-time
model descriptions, several important works have
also recently appeared that employ continuous-
time Laguerre and two-parameter Kautz bases
[24,25,43] and rational wavelet bases [13]. The
purpose of this paper is to make some further
contribution in this area by considering some issues
related to a natural generalisation of continuous-
time Laguerre and Kautz bases.

The generalisation to be considered is analogous
to the extension presented in (1). Namely, a set of
basis functions MB

n
(s)N are treated which are de"ned

by a choice of numbers a
n
3P, ∀n as

B
n
(s)O

J2ReMa
n
N

s#a
n

u
n~1

(s),

(2)

u
n
(s)O

n
<
k/1

s!a
k

s#a
k

, u
0
(s)O1.

We set B
0
(s),1. The rational basis functions

MB
n
N
nw1

are orthonormal in H
2
(P) with respect to

the inner-product (see Section 3)

SB
n
,B

m
TO

1

2pP
=

~=

B
n
( ju)B

m
( ju) du

"G
1; m"n,

0; mOn.

Analogous to the discrete-time case, the continu-
ous-time Laguerre basis (studied, for example, in
[23,33,43]) is obtained as a special case of (2) by the
choice a

n
"a3R and the continuous time two-

parameter Kautz basis (studied in [43]) by the
choice a

n
"a3C.

It should be acknowledged that both the con-
tinuous and discrete-time generalisations shown in
(2) and (1) enjoy a long history in both the pure
mathematics [14,26,40] and engineering literature
[19,28,36].

2. Main result

As mentioned in the introduction, an important
motivation for the consideration of orthonormal
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parameterisations is for approximation purposes.
In this setting, a dominant question must arise as to
the quality of the approximation. Pertaining to this,
one of the most fundamental properties that might
be required is that linear combinations of the basis
elements be capable of arbitrarily good approxima-
tion.

Put more precisely in the context of systems
theory, this involves considering an element f (s)
living in a normed linear function space (X,DD ) DD

X
),

and for arbitrary e'0 and for su$ciently large
n being able to "nd an element g(s)3spMB

k
(s)Nn

k/1
such that DD f!gDD

X
)e. Here X is a complex vector

space and the linear span is with respect to the "eld
of complex numbers.

If this is in fact possible for arbitrarily small e,
then spMB

k
(s)N

kw1
is said to be &complete' in X. The

choice of the function space depends on the
application of the approximate model, but for
quadratic optimal control purposes or mean square
optimal prediction purposes, the choice H

2
(P)

would be appropriate, while for robust control or
estimation purposes, the choices A(P) or H

p
(P) (for

large p) would be suitable.
With regard to the discrete-time basis (1), the

approximation issues have been addressed in [3]
where the following result was obtained.

Theorem 1 (Akc7 ay and Ninness [3, Theorem 6 and
Corollary 7]). Consider the set of functions MB

k
(z)N

dexned by (1). Then the set X"spMB
k
(z)N

kw1
is

complete in A(D) and H
p
(T ) for all 1)p(R if and

only if

=
+
k/1

(1!Dm
k
D)"R. (3)

The main result of this paper is to establish an
analogous result for the continuous-time basis (2)
as follows.

Theorem 2. The model set spanned by the basis func-
tions MB

n
(s)N

nw0
is complete in all of the spaces

H
p
(P), 1(p(R, and A(P) if and only if

=
+
n/1

ReMa
n
N

1#Da
n
D2
"R. (4)

Condition (4) is satis"ed by the Laguerre and
two-parameter Kautz bases and the rational
wavelets in [13]. In fact, it is a very mild condition.
For example, when a sequence of poles with "xed
real part is chosen, the only way it could be violated
is that the imaginary parts of the poles must diverge
to in"nity faster than the linear rate. If a sequence
of magnitude bounded poles are chosen, then in
order to violate (4) the real parts of the chosen basis
poles must approach to the imaginary axis very
rapidly.

In contrast to the Laguerre and two-parameter
Kautz bases, where all the poles are "xed at the same
value, the general basis (2) enjoys increased #exibility
of pole location. For example, slow and fast modes
may coexist in the model structure. As a result,
a fewer number of basis functions (and hence, for
system identi"cation applications, a fewer number of
data) may be used without sacri"cing modelling
accuracy. This feature is quanti"ed in Section 4.

Note that the conclusion of Theorem 2 may be
extended to H

1
(P). Moreover, it is possible to con-

struct orthonormal model sets that are norm dense
in H

p
(P), 1)p(R, and have a prescribed

asymptotic order [4]. In [4], it is also shown that
the Fourier series formed by the general basis func-
tions converge in all spaces H

p
(P), 1(p(R.

3. Proof of Theorem 2

Before proceeding to the proof of Theorem 2, we
shall demonstrate that the basis functions in (2) are
indeed orthonormal. When n'm, we have by Cau-
chy's Integral Theorem [37]

SB
n
, B

m
T

"!

1

2pP
=

~=

J4ReMa
n
N ReMa

m
N

(ju#a
n
)( ju#a

m
)

u
n~1

( ju)

u
m
( ju)

du

"!

1

2pjP
+R

J4ReMa
n
N ReMa

m
N

(s#a
n
)(s#a

m
)

u
n~1

(s)

u
m
(s)

ds

"! lim
r?=

C
1

2pjP
+r

~+r

J4 ReMa
n
NReMa

m
N

(s#a
n
)(s#a

m
)

u
n~1

(s)

u
m
(s)

ds

#O(r~1)D
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" lim
r?=

C
1

2pjQC
r

J4ReMa
n
N ReMa

m
N

(s#a
n
)(s#a

m
)

u
n~1

(s)

u
m
(s)

ds

/0

hgggggigggggj

#O(r~1)D" 0, (5)

where the closed path C
r
consists of a segment of

the imaginary axis and an r radius semicircle in
P centred at the origin and is traversed counter
clockwise. When n"m, we have

SB
n
,B

n
T"

1

pP
=

~=

ReMa
n
N

u2#2u ImMa
n
N#Da

n
D2

du"1,

where the second equality follows from the formula
3.3.16 in [1]

P
1

ax2#bx#c
dx"

2

J4ac!b2
tan~1

2ax#b

J4ac!b2
.

Now we return to the proof of Theorem 2. Consid-
eration is "rst given to the underlying space being
A(P).

Lemma 3. The linear span of the set MB
n
(s)N

nw0
with

B
n
(s) dexned in (2) is complete in A(P) if (4) holds.

Proof. This will be established by "rst addressing
the completeness of spMu

n
(s)N

nw0
in A(P). Notice

that since the bilinear map

s"
1!z

1#z

preserves the supremum norms between A(P) and
A(D), the question of whether spMu

n
(s)N

nw0
is com-

plete in A(P) is equivalent to the question of the
completeness of

GunA
1!z

1#zBH
nw0

in A(D). Let

m
n
O

1!a
n

1#a
n

, a
n
O(!1)n

n
<
l/1

1#a
l

1#a
l

. (6)

Then provided ReMa
n
N'0 for all n, m

n
3D for all n.

Also

u
nA

1!z

1#zB"(!1)n
n

<
l/1

1#a
l

1#a
l

n
<
k/1

z!m
k

1!m
k
z

"a
n
/
n
(z).

Therefore, it is su$cient to establish the complete-
ness of spM/

n
(z)N

nw0
in A(D). To achieve this, con-

sider the functions MB
k
(z)N de"ned in (1). Then

B
n
(z)"

m
n
/
n
(z)#/

n~1
(z)

J1!Dm
n
D2

; n*1

and hence spMB
k
(z)Nn

k/1
LspM/

k
(z)Nn

k/0
. However

by Theorem 1, spMB
k
(z)N

kw1
is complete in A(D) if

and only if (3) is satis"ed.
Now, since

1#Da
n
D2*D1!a2

n
D"D1!a

n
DD1#a

n
D

then by the de"nition in (6)

Dm
n
D"K

1!a
n

1#a
n
K*

D1!a
n
D2

1#Da
n
D2

so that

=
+
n/1

(1!Dm
n
D))

=
+
n/1
A1!

D1!a
n
D2

1#Da
n
D2B

"2
=
+
n/1

ReMa
n
N

1#Da
n
D2
.

Conversely since

K
1!a

n
1#a

n
K"K

1!a
n

1#a
n
K K
1#a

n
1#a

n
K"

D1!a2
n
D

D1#a
n
D2
)

1#Da2
n
D

D1#a
n
D2

then

=
+
n/1

(1!Dm
n
D)*

=
+
n/1
A1!

1#Da2
n
D

D1#a
n
D2B

"2
=
+
n/1

ReMa
n
N

D1#a
n
D2
.

As well,

D1#a
n
D2)2(1#Da

n
D2)
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so that

=
+
n/1

ReMa
n
N

1#Da
n
D2
(

=
+
n/1

(1!Dm
n
D))2

=
+
n/1

ReMa
n
N

1#Da
n
D2
.

Therefore, (3) holds if and only if (4) holds implying
that under the de"nition (6), then (4) is necessary
and su$cient for spMB

k
(z)N

kw1
to be complete in

A(D) and hence for spMu
n
(s)N

nw0
to be complete in

A(P). Summing the identity

J2ReMa
k
NB

k
(s)"u

k~1
(s)!u

k
(s); k*1

over k"1,2,n then provides

n
+
k/1

J2ReMa
k
NB

k
(s)"1!u

n
(s)"B

0
(s)!u

n
(s).

Hence spMu
n
(s)N

nw0
LspMB

n
(s)N

nw0
. This completes

the proof. h

Next, the question of the H
p
(P) su$ciency of (4)

is considered.

Lemma 4. Suppose that (4) is satisxed. Then
spMB

n
N
nw1

is complete in H
p
(P) for all 1(p(R.

Proof. Let m denote the multiplicity of a
1
. Suppose

"rst that m is "nite. Then reorder the basis poles so
that a

1
"a

2
"2"a

m
. We rede"ne the basis

functions in (2) by

BI
n
(s)OG

B
n
(s), n(m,

A
s#a

1
s!a

1
BBn`1

(s), n*m.
(7)

This modi"cation of basis functions removes
a
m

from the pole parameter set Ma
k
N
kw1

.

Let Q
n
denote the set containing all partial frac-

tion expansion terms of BI
n
. For example, when

m'1

Q
m
OG

1

s#a
1

,2,
1

(s#a
1
)m~1

,
1

s#a
m`1
H,

and so on. Let

QO
=
Z
n/1

Q
n
.

Since

+
kEm

ReMa
k
N

1#Da
k
D2
"R,

spMBI
n
N
nw0

is a complete set in A(P) by Lemma 3,
and so is spMB

0
XQN since

spMBI
n
N
nw0

LspMB
0
XQN.

Let f3H
p
(P) and e'0. Approximate f by a func-

tion g3A(P) that has the properties

lim
@s@?=

DsDDg(s)D"0, s3P,

and

DD f!gDD
p
(e.

This is possible since such functions form a dense
subset of H

p
(P) (see for example, Garnett [15, Co-

rollary 3.3 in Chapter II]). Let h(s)"(s#a
1
)g(s).

Then h3A(P). Since spMB
0
XQN is a complete set in

A(P), there exists a u3spMB
0
XQN such that

DDh!uDD
=
(e

or

Kg(s)!
u(s)

s#a
1
K(

e
Ds#a

1
D
, s3P.

Hence

KK f!
u

s#a
1
KK
p

(e#KK
1

s#a
1
KK
p

e.

We have shown that the set

POG
v(s)

s#a
1

: v(s)3spMB
0
XQNH (8)

is a dense subset of H
p
(P) for all 1(p(R. It

remains to show that PLspMB
n
N
nw1

. This will
imply that spMB

n
N
nw1

is a complete set in H
p
(P) for

all 1(p(R. To this end, let v3spMB
0
XQN. Since

v3spMB
0
XQN, it can be written uniquely as a linear
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combination of the elements in Q and B
0
as follows:

v(s)"c
0
#

=
+
k/1

c
k

(s#a
k
)N(k)

,

where N(k) denotes the multiplicity of a
k

in the
set Ma

1
,a

2
,2,a

k
N and only a "nite number of the

coe$cients c
k

are nonzero. Notice that c
m
"0.

Then

v(s)

s#a
1

"

c
0

s#a
1

#2#

c
m~1

(s#a
1
)m

#

=
+

k/m`1

c
k

(s#a
1
)(s#a

k
)N(k)

.

Since a
k
Oa

1
for k'm, the terms c

k
/(s#a

1
)

(s#a
k
)N(k) admit further expansions

c
k

(s#a
1
)(s#a

k
)N(k)

"

d
1

s#a
1

#

d
2

s#a
k

#2#

d
N(k)

(s#a
k
)N(k)

.

Hence

v(s)

s#a
1

3spG
1

s#a
1

,2,
1

(s#a
1
)m

,
1

s#a
m`1

,2H
"spF,

where

FOQXG
1

(s#a
1
)mH. (9)

Thus PLspF. To complete the proof for m(R,
we need to show that spFLspMB

n
N
nw1

. Let n be an
arbitrary positive integer. Write the partial fraction
expansions of the basis elements B

1
,B

2
,2,B

n
in the

following linear equation form:

C
B
1

B
2
F

B
n
D"C

a
11

0 2 0

a
21

a
22

2 0

F F } F

a
n1

a
n2

2 a
nn
D

]C
1

s#a
1

1

(s#a
2
)N(2)

F

1

(s#a
n
)N(n)

D .

The degree of B
k
is k, which implies that a

kk
O0 for

all k)n and thus the lower triangular matrix
above is invertible. Hence, for i"1,2,n

1

(s#a
i
)N(i)

3spMB
k
,k"1,2,nNLspMB

k
N
kw1

.

Consequently spFLspMB
n
N
nw1

.
Suppose now that m"R. Then for each n,

de"ne Q
n

as the set containing all partial fraction
expansion terms of B

n
. In this case, the proof above

still applies with great simpli"cations since P de-
"ned in (8) equals to spQ, and F de"ned in (9)
equals to Q for all m.

Proof of Theorem 2. It only remains to establish the
necessity of (4) for completeness in H

p
(P) spaces.

Suppose then that (4) fails to hold. Then in this case
the "nite Blaschke products j

n
(s) de"ned by

j
n
(s)Ob

n
u

n
(s), b

n
O

n
<
k/1

D1!a
k
2D

1!a
k
2
, b

0
(s)O1

converge (as nPR) uniformly on P to a nonzero
function j(s)3H

=
(P) which has zeros precisely at

the points a
n
; see, for example, Garnett [15, Chap-

ter II]. Therefore, the linear functional F de"ned on
H

p
(P) for all 1)p(R and A(P) by

F(h)O
1

2pP
=

~=

h( ju)
j( ju)

(!ju#1)2
du

is nontrivial and bounded. However, by Cauchy's
Integral Theorem, it vanishes for any B

n
of the form

(2) since

F(B
n
)"

1

2pP
=

~=

!J2ReMa
n
N

( ju#1)2( ju!a
n
)

]
n~1
<
k/1

ju#a
k

ju!a
k

=
<
i/1

D1!a
i
2D

1!a
i
2

ju!a
i

ju#a
i

du
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"!

1

2pP
=

~=

W(ju)

( ju#1)2( ju#a
n
)
du

"!

1

2pjP
+R

W(s)

(s#1)2(s#a
n
)
ds

"! lim
r?=

C
1

2pjP
+r

~+r

W(s)

(s#1)2(s#a
n
)
ds

#O(r~2)D
"lim

r?=
C

1

2pjQC
r

W(s)

(s#1)2(s#a
n
)
ds#O(r~2)D

/0

hggggiggggj

"0,

where

W(s)OJ2ReMa
n
N

n
<
k/1

D1!a
k
2D

1!a
k
2

=
<

i/n`1

D1!a
i
2D

1!a
i
2

s!a
i

s#a
i

is analytic on P and the closed path C
r
is as in (5).

Similarly, F(B
0
)"0. (Note that the remainder term

above vanishes as O(r~1) in this case). Hence by an
application of the Hahn}Banach Theorem (see, for
example [2, Section 30]), spMB

n
N
nw0

de"ned by (2)
is not dense in any of the spaces A(P) and
H

p
(P), 1)p(R. This concludes the proof. h

It should be pointed out that the su$ciency part
of Lemma 3 together with Lemma 4 gives the half
of the su$ciency condition in Achieser [2, Section
A.4] for the completeness of the model sets spanned
by B

0
and the Cauchy kernels

B
a
(s)O

1

s#a
, a3Ma

1
,a

2
,2N

in the Lebesgue spaces ¸
p
, 1(p(R, and in the

space of complex functions continuous on the imagi-
nary axis including R. The linear span of the Cau-
chy kernels does not contain systems which have
repeated poles whereas with the bases (2), a greater
#exibility is utilised on the choice of basis poles.

3.1. Ensuring real-valued impulse response

Up until this point, the basis (2) has been con-
sidered with complete generality of pole location

save for the condition (4). However, in any applica-
tion involving the modelling of a physical process,
it is necessary to ensure that the underlying
modelled impulse response is real valued. If com-
plex valued choices for Ma

k
N are made in order to

accommodate resonant characteristics, then this
realness of impulse response is lost unless some
restriction is placed on how linear combination of
the basis functions is taken.

The purpose of this section is to illustrate how to
use the basis formulation (2) in such a way that
imposing realness of the weightings in the linear
combination ensures realness of the underlying im-
pulse response. This is achieved by requiring that if
a set of numbers Ma

1
,a

2
,2,a

n
N used to de"ne bases

via (2) contains a complex valued element (say a
k
),

then it always also includes its conjugate a
k
.

To be more explicit on this point, suppose that
the numbers a

1
,2,a

n~1
are real so that the basis

functions B
1
,2,B

n~1
have real-valued impulse re-

sponses. We now wish to include a complex pole at
!a

n
. Then two new basis functions B@

n
, BA

n
with

real impulse responses should be formed as a linear
combination of B

n
and B

n`1
generated by (2). These

new functions then replace B
n

and B
n`1

in any
modelling applications that require a real-valued
impulse response.

The linear combination we are suggesting can be
expressed as

C
B@
n

BA
n
D"C

c
0

c
1

c@
0

c@
1
DC

B
n

B
n`1
D, c

0
, c@

0
, c

1
, c@

1
3C.

(10)

Therefore, considering only B@
n

for the moment, if
we choose complex poles in conjugate pairs as

!a
n`1

"!a
n
then

B@
n
(s)"

J2ReMa
n
N(bs#k)

s2#(a
n
#a

n
)s#Da

n
D2

u
n~1

(s), (11)

where u
n~1

(s) has real-valued impulse response and
the real coe$cients b, k are related to the choice of
c
0
, c

1
by

c
0
"

a
n
b#k

2a
n

, c
1
"

a
n
b!k

2a
n

.
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Therefore, to ensure a unit norm for B@
n

we must
choose b and k according to the constraint that
Dc
0
D2#Dc

1
D2"1 which becomes

xTMx"2Da
n
D2, (12)

where

xO(b,k)T, MOC
Da

n
D2 0

0 1D.
Now, suppose we make two pairs of choices:
x"(b,k)T giving a basis function B@

n
and y"(b@,k@)T

giving another basis function BA
n
. These two choices

correspond to two pairs of complex numbers

Mc
0
, c

1
N and Mc@

0
, c@

1
N. The requirement c

0
c@
0
#

c
1
c@
1
"0 ensuring orthogonality of B@

n
and BA

n
can

be expressed as needing

xTMy"0 (13)

to hold, and in fact many solutions x and y to (12)
and (13) will exist. To formulate them, suppose we
begin by choosing any x satisfying (12). All solu-

tions to (12) are given by b"J2 cos h and

k"Da
n
DJ2 sin h, 0)h(2p. Then for a "xed h,

a unique y that satis"es (12) and (13) is found by
rotating x ninety degrees in the normalised eigen-
space of M:

y"M~1@2C
0 !1

1 0 DM1@2x

or, to be more explicit

y"J2(!sin h, Da
n
D cos h)T. (14)

To summarise this discussion, if we want to include
complex modes in a model structure, then we ob-
tain two basis vectors B@

n
and BA

n
from two linear

combinations of B
n

and B
n`1

that come from the
unifying construction (2). Let 0)h(2p. Then the
basis functions B@

n
and BA

n
are found as

B@
n
(s)"

J4ReMa
n
N (s cos h#Da

n
D sin h)

s2#(a
n
#a

n
)s#Da

n
D2

u
n~1

(s),

BA
n
(s)"

J4ReMa
n
N (!s sin h#Da

n
D cos h)

s2#(a
n
#a

n
)s#Da

n
D2

u
n~1

(s).

These real-valued impulse response basis vectors
B@
n

and BA
n

are then used for modelling instead of

B
n

and B
n`1

. If we require further basis functions
with complex modes then we repeat the process in
(10) by forming B@

n`1
and BA

n`1
from linear combi-

nations of B
n`2

and B
n`3

and so on, and in this
way arbitrary complex pole con"gurations may be

accommodated. For example, when a
n
"a

n`1
"

2"a
n`2m

"a
n`2m`1

, with chosen h"0 the
above basis construction process yields for
k"0,2,m

B@
n`k

(s)"
J2b s

s2#bs#cA
s2!bs#c

s2#bs#cB
k
u
n~1

(s),

BA
n`k

(s)"
J2bc

s2#bs#cA
s2!bs#c

s2#bs#cB
k
u
n~1

(s)

where b"2ReMa
n
N and c"Da

n
D2. With n"1

plugged in, this is the de"ning formula for the
two-parameter Kautz functions in [43].

Having now illustrated how the constraint of
realness of impulse response may be easily accom-
modated via constraining realness of linear combi-
nation weights, it remains to establish that this
latter restriction does not destroy completeness
properties. For this purpose, note that the basis
functions of the form described above and the basis
functions generated by (2) are related by a unitary
block diagonal matrix of the form

;OdiagA1,2,1,C
c
0

c
1

c@
0

c@
1
D,2B.

Let ;
n
3CnCn denote truncations of ;. For a given

G3H
p
(P) and e'0, via Theorem 2 there exists

a G
n
3H

p
(P) given by

G
n
(s)"

n
+
k/1

a
k
B

k
(s), a

k
3C

such that DDG!G
n
DD
p
)e/2. Then G

n
can be written

as

G
n
(s)"aT;~1

n
W

n
(s)

"

n
+
k/1

h
k
B@
k
(s), h

k
Oa

k
#jb

k
; a

k
,b

k
3R,

where hTOaT;~1
n

and here WT
n
O(B@

1
,2,B@

n
) refers

to a set of basis functions that have real-valued
impulse responses.
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Now, assume that G(s) has a real-valued impulse

response so that G( ju)"G(!ju). Then, using the

fact that DD f DD"DD f DD"DD f (!ju)DD for any f3H
p
(P)

provides

DDG!G
n
DD
p
)e

N KKG!

n
+
k/1

h
k
B@
kKK

p

)e

N KKG(!ju)!
n
+
k/1

h
k
B@
k
(!ju)KK

p

)e

N KKG!

n
+
k/1

h
k
B@
kKK

p

)e

and hence via the triangle inequality

KKG!

n
+
k/1

a
k
B@
kKK

p

"KKG!

n
+
k/1

h
k
#h

k
2

B@
kKK

p

)

e
2
#

e
2
"e

so that indeed, arbitrarily accurate modelling of
real impulse G(s) is possible by taking real linear
combinations of real impulse versions of the basis
MB

k
N.

4. Approximation of 5nite-dimensional systems

While the completeness result of Theorem 2 pro-
vides a theoretical pedigree for considering bases (2)
for system approximation purposes, it leaves open
the question of the quality of approximation for
a "nite number of bases. Addressing this will be the
concern of this section, where a useful tool is to use
the so-called &reproducing kernel'K

n
(s,k) associated

with the linear space spMB
k
(s)Nn

k/1
.

Lemma 5. Consider the basis functions MB
k
Nn
k/1

de-
xned by (2). Then

K
n
(s,k)O

n
+
k/1

B
k
(k)B

k
(s)"

1!u
n
(k)u

n
(s)

s#k
.

Proof. The proof will be by induction. First, when
n"1

B
1
(k)B

1
(s)"

a
1
#a

1
(k#a

1
)(s#a

1
)

while

1!u
1
(k)u

1
(s)

s#k
"C1!

(k!a
1
)(s!a

1
)

(k#a
1
)(s#a

1
)D

1

s#k

"

a
1
#a

1
(k#a

1
)(s#a

1
)

so that the result holds for n"1. Now suppose it
holds for n'1. Then

K
n
(s,k)"K

n~1
(s,k)#B

n
(k)B

n
(s)

"

1!u
n~1

(k)u
n~1

(s)

s#k

#

a
n
#a

n
(k#a

n
)(s#a

n
)
u
n~1

(k)u
n~1

(s)

"

1

s#k

!C
(k#a

n
)(s#a

n
)!(a

n
#a

n
)(s#k)

(s#k)(k#a
n
)(s#a

n
) D

]u
n~1

(k)u
n~1

(s)

"

1!u
n
(k)u

n
(s)

s#k
.

Therefore, by induction the result holds for
all n. h

The utility of this result becomes apparent in the
derivation of the following expression for the
"nite-order approximation error.

Lemma 6. Suppose f (s) is analytic on P and has
a partial fraction expansion

f (s)"
m
+
k/1

c
k

s#c
k

.
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Dexne f
n
(s) as an approximation to f (s) obtained by

projection onto spMB
k
(s)Nn

k/1
:

f
n
(s)O

n
+
k/1

Sf,B
k
TB

k
(s).

Then

D f (ju)!f
n
(ju)D)

m
+
k/1
K

c
k

ju#c
k
K

n
<
l/1
K
c
k
!a

l
c
k
#a

l
K. (15)

Proof. By the de"nition of f
n
(s) and for any k3P

f
n
(k)"

n
+
k/1

A
1

2pjP
+R

f (s)B
k
(s) dsBBk

(k)

"

1

2pjQC

f (s)K
n
(s,k) ds,

where C consists of the imaginary axis and an
in"nite radius semi-circle in the open right half-
plane; it is traversed clockwise. Using this de"nition
and Cauchy's integral formula gives, for k3P
arbitrary

f (k)"
1

2pjQC

f (s)

k!s
ds.

Therefore, by Lemma 5 and using the fact that

s"!s for s3jR

D f (k)!f
n
(k)D

"K
1

2pjQC

f (s)

k!s
u

n
(k)u

n
(s) dsK

"K
u
n
(k)

2pj

m
+
k/1

c
kQC

1

(s#c
k
)(k!s)

n
<
l/1

s#a
l

s!a
l

dsK
"Du

n
(k)DK

m
+
k/1

c
k

1

(k#c
k
)

n
<
l/1

c
k
!a

l
c
k
#a

l
K,

where in moving to the last line Cauchy's residue
theorem was used to evaluate the integral after
performing the change of variable sC!s. Taking
the limit as ReMkNP 0 then gives the result.

The result exposes the dependence of the approx-
imation error on the choice of poles M!a

n
N in the

base B
n
(s). Namely, the closer the poles M!a

n
N are

chosen to the poles M!c
k
N of the function f (s) being

approxiated then the more accurate the approxi-

mation of f (s) will be, and in such a way as to
decrease exponentially with increasing n.

Certainly the error bound (15) gives strong mo-
tivation for the consideration of the general basis
(2), since (in contrast to the Laguerre and Kautz
cases where all the poles are "xed at the same value)
the increased #exibility of pole location M!a

n
N will

increase the possibility of making Dc
k
!a

l
D small (for

some l) for every k, and hence making the total

product <n
l/1

Dc
k
!a

l
DDc

k
#a

l
D~1 as small as pos-

sible.

5. Application example

We conclude the paper by presenting an applica-
tion example that illustrates the utility of the basis
(2) for modelling purposes. The example involves
measurements of the frequency response of a 58 cm
long, 5 mm wide cantilevered piezo-electric lami-
nate beam (for further details, see [29]). These
measurements are shown as dots in Fig. 1. For the
purposes of control (sti!ness compensation using
the piezo-electric actuators) a transfer function
model that explains this frequency response is re-
quired. There are many ways in which this may be
achieved [6,27,35,38,39], but for the purpose of
illustrating the e$cacy of the basis (2), the simple
least-squares method introduced by Levy [22] to "t
a model

G
n
(s)"

N(s)

D(s)
"

b
n
sn#b

n~1
sn~1#2#b

1
s#b

0
sn#d

n~1
sn~1#2#d

1
s#d

0

to the frequency response measurements MG
k
NN
k/1

at
the frequencies Mu

k
NN
k/1

by means of minimising the
cost

<
N
"

N
+
k/1

DD( j u
k
)G

k
!N( j u

k
)D2

will be studied. Our purpose is not to present best
possible results on this data set, but to illustrate by
an example that the model parameterised by the
orthonormal basis (2) should be preferred to poly-
nomial models when one is concerned with numer-
ical conditioning.
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Fig. 1. Estimation using the polynomial and the orthonormal bases. The dots are the measurements, the solid line is the estimate using
the basis (2) to parameterise the model, the dash}dot line is the estimate using the Tchebychev polynomials to parameterise the model.
The Tchebychev and the polynomial estimates are identical.

As is well known [35], "nding this estimate in-
volves solving the so-called &normal equations'

C
( ju

1
)nG

1
F

( ju
N
)nG

N
D

"C
!( ju

1
)n~1G

1
, 2, !G

1
, ( ju

1
)n, 2, 1

F F

!( ju
N
)n~1G

N
, 2, !G

N
, ( ju

N
)n, 2, 1D

U

hgggggggiggggggggj

]C
d
n~1
F

d
0

b
n
F

b
0

D ,

for which the numerical stability of the solution is
highly dependent [16], on the conditioning of the
matrix UTU. However this can be altered via re-
parameterisations of the model G(s). For example,
in [5] the parameterisation

N(s)"b
0
#

n
+
k/1

b
k
p
k
(s),

D(s)"sn#
n~1
+
k/0

d
k
p
k
(s),

(16)

where each p
k
(s) is an order k &modi"ed

Tchebychev' polynomial (p
0
"1) is suggested as

a means of improving numerical conditioning.
In Fig. 1, the dash}dot line shows the results of

using the above Tchebychev parameterisation to "t
an n"18th-order model to the observed frequency
response. Note that the second resonance peak is
completely missed, and that the resonance frequen-
cies from the 3rd resonant mode onwards are sig-
ni"cantly shifted.
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Fig. 2. The singular values of U using the polynomial (natural and the Tchebychev) and the rational orthonormal basis (2).

However, if the model is parameterised using the
orthonormal basis (2) as

N(s)"b
0
#

n
+
k/1

b
k
B
k
(s),

D(s)"sn#
n
+
k/1

d
k
B
k
(s),

(17)

with the pole choice !a
k
"!a"!2u

N
, then

the ensuing 18th-order least-squares estimate is the
solid line shown in Fig. 1, which now captures the
second resonance peak, and correctly matches the
resonance frequencies from the 3rd resonant mode
onwards.

Since the model structures (16) and (17) both
span the same manifold of rational models, the only
explanation for the di!erence in results is that of
di!erences in numerical conditioning. Fig. 2 shows
the singular values of U for the three model para-
meterisation choices. (There are 36 singular values
of U since the chosen model order is 18). Consider-
ing the log-scale employed, the parameterisation
using the basis (17) enjoys a two order of magnitude

better conditioning (the ratio of the largest to the
smallest singular value) than either a Tchebychev
polynomial, or conventional polynomial para-
meterisation.

As a consequence, for such applications of mod-
elling resonant structures over large bandwidths,
we suggest that the basis (2) should be employed in
the interests of the resultant frequency response
having no artifacts due to poor numerical condi-
tioning.

6. Conclusion

This paper has provided a preliminary study of
the approximation properties of a particular class
of rational orthonormal bases that are suitable for
continuous-time system modelling. The main result
was to establish that the bases were capable of
arbitrarily good approximation with respect to
a wide variety of norms employed in the system-
theoretic analysis of stable systems. The utility of
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the generalising nature of the particular bases con-
sidered here was also exposed by establishing that
signi"cantly improved "nite-order approximation
accuracy was possible by exploiting the #exibility
in allowed pole position. This is in contrast to the
more well known Laguerre and two-parameter
Kautz bases, which are obtained as special cases of
the bases considered here by choosing all the poles
"xed at one location.
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