Differential Fault Analysis against AES-192 and AES-256 with Minimal Faults

Chong Hee KIM

Information Security Group
Université Catholique de Louvain, Belgium

August 21, 2010
1 Introduction
 - Differential fault analysis against AES
 - AES
 - AES key scheduling

2 Fault model and basic concept of DFA against AES
 - Fault model
 - Basic concept of DFA against AES-128

3 Proposed attacks
 - DFA against AES-192
 - DFA against AES-256

4 Comparison and conclusions
Outline

1 Introduction
 - Differential fault analysis against AES
 - AES
 - AES key scheduling

2 Fault model and basic concept of DFA against AES
 - Fault model
 - Basic concept of DFA against AES-128

3 Proposed attacks
 - DFA against AES-192
 - DFA against AES-256

4 Comparison and conclusions
Differential fault analysis

DFA (Differential fault analysis)

- DFA uses differential information between correct and faulty ciphertexts to figure out the secret key
- Normally attacker gets faulty ciphertexts by giving external impact with voltage variation, glitch, laser, etc
- The first DFA: against DES by Biham and Shamir, 1997

DFA against AES-128

- Piret and Quisquater (2003)
 - 2 pairs, practical fault model (random byte error)
- Fukunaga and Takahashi: 1 pair with 2^{32} exhaustive search
 (8-35 minutes at Core2 Duo 3.0GHz PC)
- Tunstall and Mukhopadhyay: 1 pair with 2^8 exhaustive search
Differential fault analysis

DFA (Differential fault analysis)
- DFA uses differential information between correct and faulty ciphertexts to figure out the secret key.
- Normally attacker gets faulty ciphertexts by giving external impact with voltage variation, glitch, laser, etc.
- The first DFA: against DES by Biham and Shamir, 1997

DFA against AES-128
- Piret and Quisquater (2003)
 - 2 pairs, practical fault model (random byte error)
- Fukunaga and Takahashi: 1 pair with 2^{32} exhaustive search (8-35 minutes at Core2 Duo 3.0GHz PC)
- Tunstall and Mukhopadhyay: 1 pair with 2^8 exhaustive search
DFA against AES-192 and AES-256

- Application of Piret and Quisquater’s: 4 pairs
- 2009, Li et al.: 16 or 3000 pairs
- 2010, Bareghi et al.: 16 pairs
- 2010, Takahashi and Fukunaga: 3 pairs for AES-192, 4 pairs for AES-256 (2 faulty plaintexts)
- Proposed methods: 2 pairs for AES-192, 3 pairs for AES-256
AES

- Intermediate result, called State, is represented as a two-dimensional byte array with 4 rows and 4 columns.

\[
\begin{array}{cccc}
S_{(0,0)} & S_{(0,1)} & S_{(0,2)} & S_{(0,3)} \\
S_{(1,0)} & S_{(1,1)} & S_{(1,2)} & S_{(1,3)} \\
S_{(2,0)} & S_{(2,1)} & S_{(2,2)} & S_{(2,3)} \\
S_{(3,0)} & S_{(3,1)} & S_{(3,2)} & S_{(3,3)} \\
\end{array}
\]
Each round is composed of 4 transformations except the last round:
- **SubBytes**: 16 identical 8×8 S-boxes, non-linear byte substitution
- **ShiftRows**: Each row is cyclically shifted over different offsets
- **MixColumns**: A linear transformation to each column
- **AddRoundKey**: A bitwise XOR with a round key

Number of rounds

<table>
<thead>
<tr>
<th></th>
<th>Key length</th>
<th>Number of rounds r</th>
</tr>
</thead>
<tbody>
<tr>
<td>AES-128</td>
<td>128</td>
<td>10</td>
</tr>
<tr>
<td>AES-192</td>
<td>192</td>
<td>12</td>
</tr>
<tr>
<td>AES-256</td>
<td>256</td>
<td>14</td>
</tr>
</tbody>
</table>

Chong Hee KIM, Université Catholique de Louvain

DFA against AES-192 and AES-256 with Minimal Faults
Each round is composed of 4 transformations except the last round:
 - **SubBytes**: 16 identical 8×8 S-boxes, non-linear byte substitution
 - **ShiftRows**: Each row is cyclically shifted over different offsets
 - **MixColumns**: A linear transformation to each column
 - **AddRoundKey**: A bitwise XOR with a round key

Number of rounds

<table>
<thead>
<tr>
<th></th>
<th>Key length</th>
<th>Number of rounds r</th>
</tr>
</thead>
<tbody>
<tr>
<td>AES-128</td>
<td>128</td>
<td>10</td>
</tr>
<tr>
<td>AES-192</td>
<td>192</td>
<td>12</td>
</tr>
<tr>
<td>AES-256</td>
<td>256</td>
<td>14</td>
</tr>
</tbody>
</table>
Introduction
Fault model and basic concept of DFA against AES
Proposed attacks
Comparison and conclusions

Differential fault analysis against AES
AES
AES key scheduling

AES

- Each round is composed of 4 transformations except the last round:
 - **SubBytes**: 16 identical 8×8 S-boxes, non-linear byte substitution
 - **ShiftRows**: Each row is cyclically shifted over different offsets
 - **MixColumns**: A linear transformation to each column
 - **AddRoundKey**: A bitwise XOR with a round key

Number of rounds

<table>
<thead>
<tr>
<th>Key length</th>
<th>Number of rounds r</th>
</tr>
</thead>
<tbody>
<tr>
<td>AES-128</td>
<td>128</td>
</tr>
<tr>
<td>AES-192</td>
<td>192</td>
</tr>
<tr>
<td>AES-256</td>
<td>256</td>
</tr>
</tbody>
</table>

Chong Hee KIM, Université Catholique de Louvain

DFA against AES-192 and AES-256 with Minimal Faults
Each round is composed of 4 transformations except the last round:

- **SubBytes**: 16 identical 8×8 S-boxes, non-linear byte substitution
- **ShiftRows**: Each row is cyclically shifted over different offsets
- **MixColumns**: A linear transformation to each column
- **AddRoundKey**: A bitwise XOR with a round key

Number of rounds

<table>
<thead>
<tr>
<th></th>
<th>Key length</th>
<th>Number of rounds r</th>
</tr>
</thead>
<tbody>
<tr>
<td>AES-128</td>
<td>128</td>
<td>10</td>
</tr>
<tr>
<td>AES-192</td>
<td>192</td>
<td>12</td>
</tr>
<tr>
<td>AES-256</td>
<td>256</td>
<td>14</td>
</tr>
</tbody>
</table>
Introduction
Fault model and basic concept of DFA against AES
Proposed attacks
Comparison and conclusions

Differential fault analysis against AES
AES
AES key scheduling

AES key scheduling

Chong Hee KIM, Université Catholique de Louvain

DFA against AES-192 and AES-256 with Minimal Faults
AES - 256

AES key scheduling

K^{13}

K^{14}

AES - 256

Chong Hee KIM, Université Catholique de Louvain

DFA against AES-192 and AES-256 with Minimal Faults
Outline

1. Introduction
 - Differential fault analysis against AES
 - AES
 - AES key scheduling

2. Fault model and basic concept of DFA against AES
 - Fault model
 - Basic concept of DFA against AES-128

3. Proposed attacks
 - DFA against AES-192
 - DFA against AES-256

4. Comparison and conclusions
Fault model

We assume that

- a byte of the AES intermediate state is corrupted by fault injection
- the corrupted value is random and unknown to the attacker

Location of corrupted byte among 16 bytes

- may be known to the attacker:
 - ex) in [6], it was shown that precise control of fault injection was possible
- may be not:
 - perform 16 independent equivalent analysis
 - we assume that the attacker knows the location

We assume that the attacker can get a pair of correct and faulty ciphertexts
Fault model

- We assume that
 - a byte of the AES intermediate state is corrupted by fault injection
 - the corrupted value is random and unknown to the attacker
- Location of corrupted byte among 16 bytes
 - may be known to the attacker:
 - ex) in [6], it was shown that precise control of fault injection was possible
 - may be not:
 - perform 16 independent equivalent analysis
 - we assume that the attacker knows the location
- We assume that the attacker can get a pair of correct and faulty ciphertexts
Fault model

- We assume that
 - a byte of the AES intermediate state is corrupted by fault injection
 - the corrupted value is random and unknown to the attacker
- Location of corrupted byte among 16 bytes
 - may be known to the attacker: ex) in [6], it was shown that precise control of fault injection was possible
 - may be not:
 - perform 16 independent equivalent analysis
 - we assume that the attacker knows the location
- We assume that the attacker can get a pair of correct and faulty ciphertexts
Basic concept of DFA against AES-128

- Based on Piret and Quisquater’s method
 + recent improvement
- A 1-byte fault between MixColumns of rounds 7th and 8th
Basic concept of DFA against AES-128

Fault model and basic concept of DFA against AES

Proposed attacks

Comparison and conclusions

MixCol
Shift rows
Sub bytes

K^8

S^{10}
Differential equations
Sub bytes
Shift rows

K^{10}

K^9

K^{10}

K^9

K^8

K^{10}

K^9

MixCol
Shift rows
Sub bytes

Chong Hee KIM, Université Catholique de Louvain
DFA against AES-192 and AES-256 with Minimal Faults
Basic concept of DFA against AES-128

MixCol \rightarrow K^8 \rightarrow \text{Sub bytes} \rightarrow K^{10} \rightarrow \text{Shift rows} \rightarrow K^9 \rightarrow S^{10} \rightarrow \text{Differential equations}
Basic concept of DFA against AES-128

Fault model and basic concept of DFA against AES

Proposed attacks

Comparison and conclusions

Introduction

Fault model

Basic concept of DFA against AES-128

Differential equations

S^{10}

\text{Sub bytes}

\text{Shift rows}

K^{10}

2^{32}

K^9

MixCol

Sub bytes

Shift rows

MixCol
Basic concept of DFA against AES-128

MixCol

K^8

Sub bytes

Shift rows

MixCol

Differential equations

S^{10}

K^{10}

2^{32}
Basic concept of DFA against AES-128

\[\Delta S^{10}_{(0,0)} = 2\sigma, \]
\[\Delta S^{10}_{(1,0)} = \sigma, \]
\[\Delta S^{10}_{(2,0)} = \sigma, \]
\[\Delta S^{10}_{(3,0)} = 3\sigma. \]
Basic concept of DFA against AES-128

\[
\begin{align*}
SB^{-1}(C_{0,0} \oplus K_{0,0}^{10}) &\oplus SB^{-1}(C_{0,0}^{*} \oplus K_{0,0}^{10}) = 2\sigma, \\
SB^{-1}(C_{1,3} \oplus K_{1,3}^{10}) &\oplus SB^{-1}(C_{1,3}^{*} \oplus K_{1,3}^{10}) = \sigma, \\
SB^{-1}(C_{2,2} \oplus K_{2,2}^{10}) &\oplus SB^{-1}(C_{2,2}^{*} \oplus K_{2,2}^{10}) = \sigma, \\
SB^{-1}(C_{3,1} \oplus K_{3,1}^{10}) &\oplus SB^{-1}(C_{3,1}^{*} \oplus K_{3,1}^{10}) = 3\sigma.
\end{align*}
\]
Basic concept of DFA against AES-128

\[\Delta S_{10}^{(0,0)} = 2\sigma, \]
\[\Delta S_{10}^{(1,0)} = \sigma, \]
\[\Delta S_{10}^{(2,0)} = \sigma, \]
\[\Delta S_{10}^{(3,0)} = 3\sigma. \]

Among \(2^{32}\) candidates, in average \(2^8\) candidates satisfy equations.
Basic concept of DFA against AES-128

\[\Delta S_{10}^{0,0} = 2\sigma, \]
\[\Delta S_{10}^{1,0} = \sigma, \]
\[\Delta S_{10}^{2,0} = \sigma, \]
\[\Delta S_{10}^{3,0} = 3\sigma. \]

Among \(2^{32}\) candidates, in average \(2^8\) candidates satisfy equations.
Basic concept of DFA against AES-128

For other columns we construct similar equations.

We have 2^{32} candidates for K^{10}.

With 2 pairs, we have the correct key K^{10}.
Basic concept of DFA against AES-128

According to [12], we can further reduce the number of candidates to 2^8.
Basic concept of DFA against AES-128

According to [12], we can further reduce the number of candidates to 2^8.
Basic concept of DFA against AES-128

According to [12], we can further reduce the number of candidates to 2^8.
Basic concept of DFA against AES-128

According to [12], we can further reduce the number of candidates to 2^8.

Chong Hee KIM, Université Catholique de Louvain
Outline

1. Introduction
 - Differential fault analysis against AES
 - AES
 - AES key scheduling

2. Fault model and basic concept of DFA against AES
 - Fault model
 - Basic concept of DFA against AES-128

3. Proposed attacks
 - DFA against AES-192
 - DFA against AES-256

4. Comparison and conclusions
With a current normal PC, an exhaustive search of 2^{32} can be done within tens of minutes.

Therefore we try to minimize the required number of faults with up to 2^{32} exhaustive search.
DFA against AES-192: Method 1

Attack procedure

1. Obtain 2 pairs of \((C_1, C_1^*)\) and \((C_2, C_2^*)\). Where the faults are injected between *MixColumns* of round 9 and 10.
2. Find \(K^{12}\).
3. Find the left-half of \(K^{11}\) with key schedule.
4. Find \(2^{32}\) candidates for the right-half of \(K^{11}\).
5. Find the master secret key with an exhaustive search of \(2^{32}\).
DFA against AES-192: Method 1

Attack procedure

1. Obtain 2 pairs of \((C_1, C_1^*)\) and \((C_2, C_2^*)\). Where the faults are injected between \textit{MixColumns} of round 9 and 10.

2. Find \(K^{12}\).

3. Find the left-half of \(K^{11}\) with key schedule.

4. Find \(2^{32}\) candidates for the right-half of \(K^{11}\).

5. Find the master secret key with an exhaustive search of \(2^{32}\).
DFA against AES-192: Method 1

Attack procedure

1. Obtain 2 pairs of \((C_1, C_1^*)\) and \((C_2, C_2^*)\). Where the faults are injected between *MixColumns* of round 9 and 10.
2. Find \(K^{12}\).
3. Find the left-half of \(K^{11}\) with key schedule.
4. Find \(2^{32}\) candidates for the right-half of \(K^{11}\).
5. Find the master secret key with an exhaustive search of \(2^{32}\).
DFA against AES-192: Method 1

Attack procedure

1. Obtain 2 pairs of \((C_1, C_1^*)\) and \((C_2, C_2^*)\). Where the faults are injected between *MixColumns* of round 9 and 10.

2. Find \(K^{12}\).

3. Find the left-half of \(K^{11}\) with key schedule.

4. Find \(2^{32}\) candidates for the right-half of \(K^{11}\).

5. Find the master secret key with an exhaustive search of \(2^{32}\).
DFA against AES-192: Method 1

Attack procedure

1. Obtain 2 pairs of \((C_1, C_1^*)\) and \((C_2, C_2^*)\). Where the faults are injected between *MixColumns* of round 9 and 10.

2. Find \(K^{12}\).

3. Find the left-half of \(K^{11}\) with key schedule.

4. Find \(2^{32}\) candidates for the right-half of \(K^{11}\).

5. Find the master secret key with an exhaustive search of \(2^{32}\).
DFA against AES-192: Method 1

Attack procedure

1. Obtain 2 pairs of (C_1, C_1^*) and (C_2, C_2^*). Where the faults are injected between *MixColumns* of round 9 and 10.
2. Find K^{12}.
3. Find the left-half of K^{11} with key schedule.
4. Find 2^{32} candidates for the right-half of K^{11}.
5. Find the master secret key with an exhaustive search of 2^{32}.

Chong Hee KIM, Université Catholique de Louvain
DFA against AES-192: Method 1

1. Find K^{12} with 2 pairs
2. Find the left-half of K^{11} with key schedule
3. Find 2^{32} candidates for the right-half of K^{11}
4. Find the master secret key with an exhaustive search of 2^{32}
DFA against AES-192: Method 1

1. Find K^{12} with 2 pairs
2. Find the left-half of K^{11} with key schedule
3. Find 2^{32} candidates for the right-half of K^{11}
4. Find the master secret key with an exhaustive search of 2^{32}
DFA against AES-192: Method 1

1. Find K^{12} with 2 pairs
2. Find the left-half of K^{11} with key schedule
3. Find 2^{32} candidates for the right-half of K^{11}
4. Find the master secret key with an exhaustive search of 2^{32}
DFA against AES-192: Method 1

1. Find K^{12} with 2 pairs
2. Find the left-half of K^{11} with key schedule
3. Find 2^{32} candidates for the right-half of K^{11}
4. Find the master secret key with an exhaustive search of 2^{32}
DFA against AES-192: Method 1

1. Find K^{12} with 2 pairs
2. Find the left-half of K^{11} with key schedule
3. Find 2^{32} candidates for the right-half of K^{11}
4. Find the master secret key with an exhaustive search of 2^{32}
DFA against AES-192: Method 1

1. Find K^{12} with 2 pairs
2. Find the left-half of K^{11} with key schedule
3. Find 2^{32} candidates for the right-half of K^{11}
4. Find the master secret key with an exhaustive search of 2^{32}
DFA against AES-192: Method 2

Attack procedure

1. Obtain a pair of \((C_1, C_1^*)\). Where the faults are injected between *MixColumns* of round 9 and 10.
2. Obtain a pair of \((C_2, C_2^*)\). Where the faults are injected between *MixColumns* of round 8 and 9.
3. Find \(2^{32}\) candidates for \(K^{12}\) with \((C_1, C_1^*)\).
4. Compute the \(2^{32}\) for left-half of \(K^{11}\) with key schedule.
5. Reduce the candidates for \(K^{12}\) and the left-half of \(K^{11}\) to \(2^{24}\).
6. Find the left-half of \(K^{11}\) and \(K^{12}\) with \((C_2, C_2^*)\).
7. Find the \(2^8\) candidates for right-half of \(K^{11}\) with \((C_2, C_2^*)\).
8. Find the \(MC^{-1}(K^{11})\) with \((C_1, C_1^*)\).
DFA against AES-192: Method 2

Attack procedure

1. Obtain a pair of \((C_1, C_1^*)\). Where the faults are injected between \textit{MixColumns} of round 9 and 10.
2. Obtain a pair of \((C_2, C_2^*)\). Where the faults are injected between \textit{MixColumns} of round 8 and 9.
3. Find \(2^{32}\) candidates for \(K^{12}\) with \((C_1, C_1^*)\).
4. Compute the \(2^{32}\) for left-half of \(K^{11}\) with key schedule.
5. Reduce the candidates for \(K^{12}\) and the left-half of \(K^{11}\) to \(2^{24}\).
6. Find the left-half of \(K^{11}\) and \(K^{12}\) with \((C_2, C_2^*)\).
7. Find the \(2^8\) candidates for right-half of \(K^{11}\) with \((C_2, C_2^*)\).
8. Find the \(MC^{-1}(K^{11})\) with \((C_1, C_1^*)\).
DFA against AES-192: Method 2

Attack procedure

1. Obtain a pair of \((C_1, C_1^*)\). Where the faults are injected between *MixColumns* of round 9 and 10.
2. Obtain a pair of \((C_2, C_2^*)\). Where the faults are injected between *MixColumns* of round 8 and 9.
3. Find \(2^{32}\) candidates for \(K_{12}\) with \((C_1, C_1^*)\).
4. Compute the \(2^{32}\) for left-half of \(K_{11}\) with key schedule.
5. Reduce the candidates for \(K_{12}\) and the left-half of \(K_{11}\) to \(2^{24}\).
6. Find the left-half of \(K_{11}\) and \(K_{12}\) with \((C_2, C_2^*)\).
7. Find the \(2^8\) candidates for right-half of \(K_{11}\) with \((C_2, C_2^*)\).
8. Find the \(MC^{-1}(K_{11})\) with \((C_1, C_1^*)\).
DFA against AES-192: Method 2

Attack procedure

1. Obtain a pair of \((C_1, C_1^*)\). Where the faults are injected between *MixColumns* of round 9 and 10.
2. Obtain a pair of \((C_2, C_2^*)\). Where the faults are injected between *MixColumns* of round 8 and 9.
3. Find \(2^{32}\) candidates for \(K^{12}\) with \((C_1, C_1^*)\).
4. Compute the \(2^{32}\) for left-half of \(K^{11}\) with key schedule.
5. Reduce the candidates for \(K^{12}\) and the left-half of \(K^{11}\) to \(2^{24}\).
6. Find the left-half of \(K^{11}\) and \(K^{12}\) with \((C_2, C_2^*)\).
7. Find the \(2^8\) candidates for right-half of \(K^{11}\) with \((C_2, C_2^*)\).
8. Find the \(MC^{-1}(K^{11})\) with \((C_1, C_1^*)\).
DFA against AES-192: Method 2

Attack procedure

1. Obtain a pair of \((C_1, C_1^*)\). Where the faults are injected between *MixColumns* of round 9 and 10.
2. Obtain a pair of \((C_2, C_2^*)\). Where the faults are injected between *MixColumns* of round 8 and 9.
3. Find \(2^{32}\) candidates for \(K^{12}\) with \((C_1, C_1^*)\).
4. Compute the \(2^{32}\) for left-half of \(K^{11}\) with key schedule.
5. Reduce the candidates for \(K^{12}\) and the left-half of \(K^{11}\) to \(2^{24}\).
6. Find the left-half of \(K^{11}\) and \(K^{12}\) with \((C_2, C_2^*)\).
7. Find the \(2^8\) candidates for right-half of \(K^{11}\) with \((C_2, C_2^*)\).
8. Find the \(MC^{-1}(K^{11})\) with \((C_1, C_1^*)\).
DFA against AES-192: Method 2

Attack procedure

1. Obtain a pair of \((C_1, C_1^*)\). Where the faults are injected between *MixColumns* of round 9 and 10.
2. Obtain a pair of \((C_2, C_2^*)\). Where the faults are injected between *MixColumns* of round 8 and 9.
3. Find \(2^{32}\) candidates for \(K^{12}\) with \((C_1, C_1^*)\).
4. Compute the \(2^{32}\) for left-half of \(K^{11}\) with key schedule.
5. Reduce the candidates for \(K^{12}\) and the left-half of \(K^{11}\) to \(2^{24}\).
6. Find the left-half of \(K^{11}\) and \(K^{12}\) with \((C_2, C_2^*)\).
7. Find the \(2^8\) candidates for right-half of \(K^{11}\) with \((C_2, C_2^*)\).
8. Find the \(MC^{-1}(K^{11})\) with \((C_1, C_1^*)\).
DFA against AES-192: Method 2

Attack procedure

1. Obtain a pair of \((C_1, C_1^*)\). Where the faults are injected between *MixColumns* of round 9 and 10.
2. Obtain a pair of \((C_2, C_2^*)\). Where the faults are injected between *MixColumns* of round 8 and 9.
3. Find \(2^{32}\) candidates for \(K_{12}\) with \((C_1, C_1^*)\).
4. Compute the \(2^{32}\) for left-half of \(K_{11}\) with key schedule.
5. Reduce the candidates for \(K_{12}\) and the left-half of \(K_{11}\) to \(2^{24}\).
6. Find the left-half of \(K_{11}\) and \(K_{12}\) with \((C_2, C_2^*)\).
7. Find the \(2^8\) candidates for right-half of \(K_{11}\) with \((C_2, C_2^*)\).
8. Find the \(MC^{-1}(K_{11})\) with \((C_1, C_1^*)\).
DFA against AES-192: Method 2

Attack procedure

1. Obtain a pair of \((C_1, C_1^*)\). Where the faults are injected between *MixColumns* of round 9 and 10.
2. Obtain a pair of \((C_2, C_2^*)\). Where the faults are injected between *MixColumns* of round 8 and 9.
3. Find \(2^{32}\) candidates for \(K^{12}\) with \((C_1, C_1^*)\).
4. Compute the \(2^{32}\) for left-half of \(K^{11}\) with key schedule.
5. Reduce the candidates for \(K^{12}\) and the left-half of \(K^{11}\) to \(2^{24}\).
6. Find the left-half of \(K^{11}\) and \(K^{12}\) with \((C_2, C_2^*)\).
7. Find the \(2^8\) candidates for right-half of \(K^{11}\) with \((C_2, C_2^*)\).
8. Find the \(MC^{-1}(K^{11})\) with \((C_1, C_1^*)\).
DFA against AES-192: Method 2

1. Find 2^{32} candidates for K^{12} with (C_1, C_1^*)
2. Compute the 2^{32} candidates for left-half of K^{11} with key schedule.
3. Reduce the candidates for K^{12} and the left-half of K^{11} to 2^{24}.
4. Find the left-half of K^{11} and K^{12} with (C_2, C_2^*).

Chong Hee KIM, Université Catholique de Louvain

DFA against AES-192 and AES-256 with Minimal Faults
DFA against AES-192: Method 2

1. Find 2^{32} candidates for K^{12} with (C_1, C_1^*).
2. Compute the 2^{32} candidates for left-half of K^{11} with key schedule.
3. Reduce the candidates for K^{12} and the left-half of K^{11} to 2^{24}.
4. Find the left-half of K^{11} and K^{12} with (C_2, C_2^*).

Chong Hee KIM, Université Catholique de Louvain

DFA against AES-192 and AES-256 with Minimal Faults
DFA against AES-192: Method 2

1. Find 2^{32} candidates for K^{12} with (C_1, C_1^*).
2. Compute the 2^{32} candidates for left-half of K^{11} with key schedule.
3. Reduce the candidates for K^{12} and the left-half of K^{11} to 2^{24}.
4. Find the left-half of K^{11} and K^{12} with (C_2, C_2^*).

Chong Hee KIM, Université Catholique de Louvain
DFA against AES-192: Method 2

1. Find 2^{32} candidates for K^{12} with (C_1, C_1^*).
2. Compute the 2^{32} candidates for left-half of K^{11} with key schedule.
3. Reduce the candidates for K^{12} and the left-half of K^{11} to 2^{24}.
4. Find the left-half of K^{11} and K^{12} with (C_2, C_2^*).
DFA against AES-192: Method 2

1. Find 2^{32} candidates for K^{12} with (C_1, C_1^*).
2. Compute the 2^{32} candidates for left-half of K^{11} with key schedule.
3. Reduce the candidates for K^{12} and the left-half of K^{11} to 2^{24}.
4. Find the left-half of K^{11} and K^{12} with (C_2, C_2^*).

Chong Hee KIM, Université Catholique de Louvain
DFA against AES-192: Method 2

1. Find 2^{32} candidates for K^{12} with (C_1, C_1^*).

2. Compute the 2^{32} candidates for left-half of K^{11} with key schedule.

3. Reduce the candidates for K^{12} and the left-half of K^{11} to 2^{24}.

4. Find the left-half of K^{11} and K^{12} with (C_2, C_2^*).

DFA against AES-192 and AES-256 with Minimal Faults
DFA against AES-192: Method 2

1. Find 2^{32} candidates for K^{12} with (C_1, C_1^*).
2. Compute the 2^{32} candidates for left-half of K^{11} with key schedule.
3. Reduce the candidates for K^{12} and the left-half of K^{11} to 2^{24}.
4. Find the left-half of K^{11} and K^{12} with (C_2, C_2^*).
DFA against AES-192: Method 2

- **Find the 2^8 candidates for right-half of K^{11} with (C_2, C_2^*).**

- **Find the $MC^{-1}(K^{11})$ with (C_1, C_1^*).**

- **Compute the master secret key.**
DFA against AES-192: Method 2

5. Find the 2^8 candidates for right-half of K^{11} with (C_2, C_2^*).

6. Find the $MC^{-1}(K^{11})$ with (C_1, C_1^*).

7. Compute the master secret key.
DFA against AES-192: Method 2

1. Find the 2^8 candidates for right-half of K^{11} with (C_2, C_2^*).
2. Find the $MC^{-1}(K^{11})$ with (C_1, C_1^*).
3. Compute the master secret key.
DFA against AES-256

Attack procedure

1. Obtain two pairs of correct and faulty ciphertexts \((C_1, C_1^*)\) and \((C_2, C_2^*)\) by giving faults between *MixColumns* of round 11 and 12.

2. Obtain a pair of correct and faulty ciphertexts \((C_3, C_3^*)\) by giving faults between *MixColumns* of round 10 and 11.

3. Find \(K^{14}\) with \((C_1, C_1^*)\) and \((C_2, C_2^*)\).

4. Find \(2^{32}\) candidates for \(MC^{-1}(K^{13})\) with \((C_3, C_3^*)\).

5. Find \(K^{13}\) with \((C_1, C_1^*)\) and \((C_2, C_2^*)\).

6. Find the master secret key with key scheduling.
DFA against AES-256

Attack procedure

1. Obtain two pairs of correct and faulty ciphertexts \((C_1, C_1^*)\) and \((C_2, C_2^*)\) by giving faults between *MixColumns* of round 11 and 12.

2. Obtain a pair of correct and faulty ciphertexts \((C_3, C_3^*)\) by giving faults between *MixColumns* of round 10 and 11.

3. Find \(K^{14}\) with \((C_1, C_1^*)\) and \((C_2, C_2^*)\).

4. Find \(2^{32}\) candidates for \(MC^{-1}(K^{13})\) with \((C_3, C_3^*)\).

5. Find \(K^{13}\) with \((C_1, C_1^*)\) and \((C_2, C_2^*)\).

6. Find the master secret key with key scheduling.
DFA against AES-256

Attack procedure

1. Obtain two pairs of correct and faulty ciphertexts \((C_1, C_1^*)\) and \((C_2, C_2^*)\) by giving faults between \textit{MixColumns} of round 11 and 12.

2. Obtain a pair of correct and faulty ciphertexts \((C_3, C_3^*)\) by giving faults between \textit{MixColumns} of round 10 and 11.

3. Find \(K^{14}\) with \((C_1, C_1^*)\) and \((C_2, C_2^*)\).

4. Find \(2^{32}\) candidates for \(MC^{-1}(K^{13})\) with \((C_3, C_3^*)\).

5. Find \(K^{13}\) with \((C_1, C_1^*)\) and \((C_2, C_2^*)\).

6. Find the master secret key with key scheduling.
DFA against AES-256

Attack procedure

1. Obtain two pairs of correct and faulty ciphertexts \((C_1, C_1^*)\) and \((C_2, C_2^*)\) by giving faults between \(MixColumns\) of round 11 and 12.

2. Obtain a pair of correct and faulty ciphertexts \((C_3, C_3^*)\) by giving faults between \(MixColumns\) of round 10 and 11.

3. Find \(K^{14}\) with \((C_1, C_1^*)\) and \((C_2, C_2^*)\).

4. Find \(2^{32}\) candidates for \(MC^{-1}(K^{13})\) with \((C_3, C_3^*)\).

5. Find \(K^{13}\) with \((C_1, C_1^*)\) and \((C_2, C_2^*)\).

6. Find the master secret key with key scheduling.
DFA against AES-256

Attack procedure

1. Obtain two pairs of correct and faulty ciphertexts \((C_1, C_1^*)\) and \((C_2, C_2^*)\) by giving faults between \(MixColumns\) of round 11 and 12.

2. Obtain a pair of correct and faulty ciphertexts \((C_3, C_3^*)\) by giving faults between \(MixColumns\) of round 10 and 11.

3. Find \(K^{14}\) with \((C_1, C_1^*)\) and \((C_2, C_2^*)\).

4. Find \(2^{32}\) candidates for \(MC^{-1}(K^{13})\) with \((C_3, C_3^*)\).

5. Find \(K^{13}\) with \((C_1, C_1^*)\) and \((C_2, C_2^*)\).

6. Find the master secret key with key scheduling.
DFA against AES-256

1. Find K^{14} with (C_1, C_1^*) and (C_2, C_2^*).
2. Find 2^{32} candidates for $MC^{-1}(K^{13})$ with (C_3, C_3^*).
3. Find K^{13} with (C_1, C_1^*) and (C_2, C_2^*).
4. Find the master secret key with key scheduling.
DFA against AES-256

1. Find K^{14} with (C_1, C_{1}^{*}) and (C_2, C_{2}^{*}).

2. Find 2^{32} candidates for $MC^{-1}(K^{13})$ with (C_3, C_{3}^{*}).

3. Find K^{13} with (C_1, C_{1}^{*}) and (C_2, C_{2}^{*}).

4. Find the master secret key with key scheduling.
DFA against AES-256

1. Find K^{14} with (C_1, C_1^*) and (C_2, C_2^*).
2. Find 2^{32} candidates for $MC^{-1}(K^{13})$ with (C_3, C_3^*).
3. Find K^{13} with (C_1, C_1^*) and (C_2, C_2^*).
4. Find the master secret key with key scheduling.
DFA against AES-256

1. Find K^{14} with (C_1, C_1^*) and (C_2, C_2^*).
2. Find 2^{32} candidates for $MC^{-1}(K^{13})$ with (C_3, C_3^*).
3. Find K^{13} with (C_1, C_1^*) and (C_2, C_2^*).
4. Find the master secret key with key scheduling.

Chong Hee KIM, Université Catholique de Louvain

DFA against AES-192 and AES-256 with Minimal Faults
Outline

1. Introduction
 - Differential fault analysis against AES
 - AES
 - AES key scheduling

2. Fault model and basic concept of DFA against AES
 - Fault model
 - Basic concept of DFA against AES-128

3. Proposed attacks
 - DFA against AES-192
 - DFA against AES-256

4. Comparison and conclusions
Comparisons with existing DFA’s against AES-192

<table>
<thead>
<tr>
<th>Reference</th>
<th>Fault model</th>
<th>No. of faults</th>
<th>Exhaustive search</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piret and Quisquater</td>
<td>1 byte</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Li et al. method 1</td>
<td>1-4 bytes</td>
<td>12†</td>
<td>1</td>
</tr>
<tr>
<td>Li et al. method 2</td>
<td>4 bytes</td>
<td>3000†</td>
<td>1</td>
</tr>
<tr>
<td>Barenghi et al.</td>
<td>1 byte</td>
<td>16†</td>
<td>1</td>
</tr>
<tr>
<td>Takahashi and Fukunaga</td>
<td>1 byte</td>
<td>3</td>
<td>2^8</td>
</tr>
<tr>
<td>Our attack 1</td>
<td>1 byte</td>
<td>2</td>
<td>2^32</td>
</tr>
<tr>
<td>Our attack 2</td>
<td>1 byte</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

†: with same plaintext
Comparisons with existing DFA’s against AES-256

<table>
<thead>
<tr>
<th>Reference</th>
<th>Fault model</th>
<th>No. of faults</th>
<th>Exhaustive search</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piret and Quisquater</td>
<td>1 byte</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Li et al. method 1</td>
<td>1-4 bytes</td>
<td>12†</td>
<td>1</td>
</tr>
<tr>
<td>Li et al. method 2</td>
<td>4 bytes</td>
<td>3000†</td>
<td>1</td>
</tr>
<tr>
<td>Barenghi et al.</td>
<td>1 byte</td>
<td>16†</td>
<td>1</td>
</tr>
<tr>
<td>Takahashi and Fukunaga</td>
<td>1 byte</td>
<td>4‡</td>
<td>2^{13}</td>
</tr>
<tr>
<td>Our attack</td>
<td>1 byte</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

†: with same plaintext
‡: 2 faulty plaintexts and 2 faulty ciphertexts
Thank you!

Questions?