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Model checking

Calculating possibility of a scenario happening
Example: “It’s always darkest before the dawn”
Example: G(darkest(x)→ Xdawn(x))
Example:

darkest
dawn

dawn
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Stochastic models

Probability distribution over sequences of events
Generally: Markov chains
Example:

dawn darkest dawn darkest
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Finite word model checking

In general, PSPACE-complete
For deterministic automata, in P
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DFA model checking

Given a DFA (S,M, δ,q0,F ),
a Markov chain (P,M), with Pm,m′ denoting the probability of
going to m′ ∈ M from m ∈ M,
an initial vector i ∈ M stating the initial distribution of the Markov
chain,
and a vector ω ∈ [0,1]M denoting the probability of stopping the
word after reading a character in M.
Denote by ζs,m the probability of accepting a word starting with m
in the DFA starting in s.
Then the probability of generating an accepted word is∑

m∈M imζq0,m.
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DFA model checking

Notice that ζq0,m = ω(m) + (1− ω(m))
∑

m′∈M Pm,m′ζδ(q0,m),m′ if
δ(q0,m) ∈ F and ζq0,m = (1− ω(m))

∑
m′∈M Pm,m′ζδ(q0,m),m′

otherwise.
This leads to the following characterisation for ζ:

ζq,m =

{
ω(m) + (1− ω(m))

∑
m′∈M Pm,m′ζδ(q,m),m′ if δ(q,m) ∈ F

(1− ω(m))
∑

m′∈M Pm,m′ζδ(q,m),m′ otherwise.

Solving this system of equations and calculating
∑

m∈M imζq0,m
gives us a polynomial algorithm for model checking DFAs.
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Finite word model checking

In general, PSPACE-complete
For deterministic automata, in P
For unambiguous automata, also in P
The same algorithm works!
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For DFAs:

ζq,m =

{
ω(m) + (1− ω(m))

∑
m′∈M Pm,m′ζδ(q,m),m′ if δ(q,m) ∈ F

(1− ω(m))
∑

m′∈M Pm,m′ζδ(q,m),m′ otherwise.

For UFAs:

ζq,m = |δ(q,m) ∩ F |ω(m) + (1− ω(m))
∑

m′∈M

∑
q′∈δ(q,m)

Pm,m′ζq′,m′
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Infinite word model checking

In general, PSPACE-complete
For deterministic automata, in P
For unambiguous automata, in P (Baier et. al., 2016)
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UBA model checking

Let ζ be the vector of probabilities as defined before.
Then ζ satisfies

ζq,m =
∑

m′∈M

∑
q′∈δ(q,m)

Pm,m′ζq′,m′ .

In matrix terms, ζ satisfies ζ = Bζ, where

B〈q,m〉,〈q′,m′〉 =

{
Pm,m′ if q′ ∈ δ(q,m)
0 otherwise.
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Cuts

Notice that if the probability of generating an accepted word is
greater than zero, then there exist prefixes such that almost every
word beginning with that prefix is accepted
Given such a prefix p for a UBA (S,M, δ,Q0,F ), we see that for
any m ∈ M,

∑
q0∈Q0

∑
s∈δ(q0,p) ζs,m ≥ 1. δ(q0,p) is called a cut.

But since no two co-reachable states can accept the same words,
we see that

∑
q0∈Q0

∑
s∈δ(q0,p) ζs,m = 1. We call the characteristic

vector of a cut a normaliser.
Baier et. al. proved that it suffices to add one such equation for
every recurrent SCC in B, equal to 1 if the SCC is accepting.
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Calculating cuts

Cuts are calculated using extenders
Given a state q and a word w such that δ(q,w) is not a cut, an
extender is a word v such that δ(q, v) ⊇ {q,q′}, q 6= q′, and
δ(q′,w) 6= ∅. Then δ(q, vw) ) δ(q,w).
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Extenders increase set size
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Calculating cuts

Cuts are calculated using extenders
Given a state q and a word w such that δ(q,w) is not a cut, an
extender is a word v such that δ(q, v) ⊇ {q,q′}, q 6= q′, and
δ(q′,w) 6= ∅. Then δ(q, vw) ) δ(q,w).
By repeatedly calculating extenders we get a word p such that
almost any infinite word prefixed by p is accepted
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Pseudo-cuts

Cuts remain cuts, cut vectors remain cut vectors
Sums of cut vectors also invariant under transition matrices
Matrix semigroups with constant spectral radius have invariant
affine plane (Protasov, Voynov, 2017)

S. Kiefer, C. Widdershoven UBAs and Matrix Semigroups MFCS 2019 21 / 26



Pseudo-cuts

Cuts remain cuts, cut vectors remain cut vectors
Sums of cut vectors also invariant under transition matrices
Matrix semigroups with constant spectral radius have invariant
affine plane (Protasov, Voynov, 2017)

S. Kiefer, C. Widdershoven UBAs and Matrix Semigroups MFCS 2019 21 / 26



Pseudo-cuts

Cuts remain cuts, cut vectors remain cut vectors
Sums of cut vectors also invariant under transition matrices
Matrix semigroups with constant spectral radius have invariant
affine plane (Protasov, Voynov, 2017)

S. Kiefer, C. Widdershoven UBAs and Matrix Semigroups MFCS 2019 21 / 26



Pseudo-cuts

A pseudo-cut is a vector that’s invariant under transition matrices
However, if a is a pseudo-cut, then so are linear multiples of a.
Finding a pseudo-cut is not sufficient for finding a normaliser.
Solution: Co(d)-pseudo-cuts.
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Deriving normalisers from Co(d)-pseudo-cuts

Co(d)-pseudo-cuts are cuts that are 0 outside of Co(d)
No state in Co(d) apart from d accepts words accepted by d
Therefore, for a Co(d)-pseudo-cut v , 1

dv
d is a normaliser
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Calculating Co(d)-pseudo-cuts

Matrix semigroups with constant spectral radius have invariant
affine plane
Find the affine plane with BFS on M∗

Co(d)-pseudo-cuts are the vectors in the space orthogonal to the
plane, intersected with Co(d)
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Further work

Finitely ambiguous automata
(Almost) complementation
...
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