Efficient Analysis of Unambiguous Automata Using Matrix Semigroup Techniques

S. Kiefer¹ C. Widdershoven¹

¹Department of Computer Science University of Oxford

MFCS 2019

Outline

Introduction

- What is model checking
- Finite word model checking
- Infinite word model checking

Outline

Introduction

What is model checking

- Finite word model checking
- Infinite word model checking

2 Cuts

3 Pseudo-cuts

• Calculating possibility of a scenario happening

- Example: "It's always darkest before the dawn"
- Example: $\mathbf{G}(darkest(x) \rightarrow \mathbf{X}dawn(x))$
- Example:

< 🗇 🕨 < 🖃 >

- Calculating possibility of a scenario happening
- Example: "It's always darkest before the dawn"
- Example: $G(darkest(x) \rightarrow Xdawn(x))$
- Example:

< 🗇 🕨 < 🖃 >

- Calculating possibility of a scenario happening
- Example: "It's always darkest before the dawn"
- Example: $G(darkest(x) \rightarrow Xdawn(x))$
- Example:

4 A N

- Calculating possibility of a scenario happening
- Example: "It's always darkest before the dawn"
- Example: $G(darkest(x) \rightarrow Xdawn(x))$
- Example:

• Probability distribution over sequences of events

- Generally: Markov chains
- Example:

A (1) > A (2) > A

- Probability distribution over sequences of events
- Generally: Markov chains
- Example:

A (1) > A (2) > A

- Probability distribution over sequences of events
- Generally: Markov chains
- Example:

< 17 ▶

Introduction

What is model checking

Finite word model checking

Infinite word model checking

2 Cuts

3 Pseudo-cuts

• In general, PSPACE-complete

• For deterministic automata, in P

- In general, PSPACE-complete
- For deterministic automata, in P

- a Markov chain (P, M), with $P_{m,m'}$ denoting the probability of going to $m' \in M$ from $m \in M$,
- an initial vector $i \in M$ stating the initial distribution of the Markov chain,

- Denote by *ζ_{s,m}* the probability of accepting a word starting with *m* in the DFA starting in *s*.
- Then the probability of generating an accepted word is $\sum_{m \in M} i_m \zeta_{q_0,m}$.

 Given a DFA (S, M, δ, q₀, F), a Markov chain (P, M), with P_{m,m'} denoting the probability of going to m' ∈ M from m ∈ M,

an initial vector $i \in M$ stating the initial distribution of the Markov chain,

- Denote by *ζ_{s,m}* the probability of accepting a word starting with *m* in the DFA starting in *s*.
- Then the probability of generating an accepted word is $\sum_{m \in M} i_m \zeta_{q_0,m}$.

a Markov chain (P, M), with $P_{m,m'}$ denoting the probability of going to $m' \in M$ from $m \in M$,

an initial vector $i \in M$ stating the initial distribution of the Markov chain,

- Denote by *ζ_{s,m}* the probability of accepting a word starting with *m* in the DFA starting in *s*.
- Then the probability of generating an accepted word is $\sum_{m \in M} i_m \zeta_{q_0,m}$.

a Markov chain (P, M), with $P_{m,m'}$ denoting the probability of going to $m' \in M$ from $m \in M$,

an initial vector $i \in M$ stating the initial distribution of the Markov chain,

- Denote by *ζ_{s,m}* the probability of accepting a word starting with *m* in the DFA starting in *s*.
- Then the probability of generating an accepted word is $\sum_{m \in M} i_m \zeta_{q_0,m}$.

a Markov chain (P, M), with $P_{m,m'}$ denoting the probability of going to $m' \in M$ from $m \in M$,

an initial vector $i \in M$ stating the initial distribution of the Markov chain,

- Denote by *ζ_{s,m}* the probability of accepting a word starting with *m* in the DFA starting in *s*.
- Then the probability of generating an accepted word is $\sum_{m \in M} i_m \zeta_{q_0,m}$.

a Markov chain (P, M), with $P_{m,m'}$ denoting the probability of going to $m' \in M$ from $m \in M$,

an initial vector $i \in M$ stating the initial distribution of the Markov chain,

- Denote by *ζ_{s,m}* the probability of accepting a word starting with *m* in the DFA starting in *s*.
- Then the probability of generating an accepted word is $\sum_{m \in M} i_m \zeta_{q_0,m}$.

DFA model checking

- Notice that $\zeta_{q_0,m} = \omega(m) + (1 \omega(m)) \sum_{m' \in M} P_{m,m'} \zeta_{\delta(q_0,m),m'}$ if $\delta(q_0,m) \in F$ and $\zeta_{q_0,m} = (1 \omega(m)) \sum_{m' \in M} P_{m,m'} \zeta_{\delta(q_0,m),m'}$ otherwise.
- This leads to the following characterisation for ζ :

$$\zeta_{q,m} = \begin{cases} \omega(m) + (1 - \omega(m)) \sum_{m' \in M} P_{m,m'} \zeta_{\delta(q,m),m'} & \text{if } \delta(q,m) \in F \\ (1 - \omega(m)) \sum_{m' \in M} P_{m,m'} \zeta_{\delta(q,m),m'} & \text{otherwise.} \end{cases}$$

• Solving this system of equations and calculating $\sum_{m \in M} i_m \zeta_{q_0,m}$ gives us a polynomial algorithm for model checking DFAs.

DFA model checking

- Notice that $\zeta_{q_0,m} = \omega(m) + (1 \omega(m)) \sum_{m' \in M} P_{m,m'} \zeta_{\delta(q_0,m),m'}$ if $\delta(q_0,m) \in F$ and $\zeta_{q_0,m} = (1 \omega(m)) \sum_{m' \in M} P_{m,m'} \zeta_{\delta(q_0,m),m'}$ otherwise.
- This leads to the following characterisation for ζ:

$$\zeta_{q,m} = \begin{cases} \omega(m) + (1 - \omega(m)) \sum_{m' \in M} P_{m,m'} \zeta_{\delta(q,m),m'} & \text{if } \delta(q,m) \in F \\ (1 - \omega(m)) \sum_{m' \in M} P_{m,m'} \zeta_{\delta(q,m),m'} & \text{otherwise.} \end{cases}$$

• Solving this system of equations and calculating $\sum_{m \in M} i_m \zeta_{q_0,m}$ gives us a polynomial algorithm for model checking DFAs.

DFA model checking

- Notice that $\zeta_{q_0,m} = \omega(m) + (1 \omega(m)) \sum_{m' \in M} P_{m,m'} \zeta_{\delta(q_0,m),m'}$ if $\delta(q_0,m) \in F$ and $\zeta_{q_0,m} = (1 \omega(m)) \sum_{m' \in M} P_{m,m'} \zeta_{\delta(q_0,m),m'}$ otherwise.
- This leads to the following characterisation for ζ:

$$\zeta_{q,m} = \begin{cases} \omega(m) + (1 - \omega(m)) \sum_{m' \in M} P_{m,m'} \zeta_{\delta(q,m),m'} & \text{if } \delta(q,m) \in F \\ (1 - \omega(m)) \sum_{m' \in M} P_{m,m'} \zeta_{\delta(q,m),m'} & \text{otherwise.} \end{cases}$$

Solving this system of equations and calculating ∑_{m∈M} i_mζ_{q₀,m} gives us a polynomial algorithm for model checking DFAs.

- In general, PSPACE-complete
- For deterministic automata, in P
- For unambiguous automata, also in P The same algorithm works!

- In general, PSPACE-complete
- For deterministic automata, in P
- For unambiguous automata, also in P *The same algorithm works!*

• For DFAs:

$$\zeta_{q,m} = \begin{cases} \omega(m) + (1 - \omega(m)) \sum_{m' \in M} P_{m,m'} \zeta_{\delta(q,m),m'} & \text{if } \delta(q,m) \in F \\ (1 - \omega(m)) \sum_{m' \in M} P_{m,m'} \zeta_{\delta(q,m),m'} & \text{otherwise.} \end{cases}$$

• For UFAs:

$$\zeta_{q,m} = |\delta(q,m) \cap F|\omega(m) + (1-\omega(m))\sum_{m' \in M}\sum_{q' \in \delta(q,m)} P_{m,m'}\zeta_{q',m'}$$

▶ < ≧ ▶ Ē ∽ Q () MFCS 2019 11/26

イロト イヨト イヨト イヨト

Introduction

- What is model checking
- Finite word model checking
- Infinite word model checking

2 Cuts

3 Pseudo-cuts

• In general, PSPACE-complete

- For deterministic automata, in P
- For unambiguous automata, in P (Baier et. al., 2016)

- In general, PSPACE-complete
- For deterministic automata, in P
- For unambiguous automata, in P (Baier et. al., 2016)

- In general, PSPACE-complete
- For deterministic automata, in P
- For unambiguous automata, in P (Baier et. al., 2016)

• Let ζ be the vector of probabilities as defined before.

• Then ζ satisfies

$$\zeta_{q,m} = \sum_{m' \in \mathcal{M}} \sum_{q' \in \delta(q,m)} P_{m,m'} \zeta_{q',m'}.$$

• In matrix terms, ζ satisfies $\zeta = B\zeta$, where

$$B_{\langle q,m\rangle,\langle q',m'\rangle} = \begin{cases} P_{m,m'} & \text{if } q' \in \delta(q,m) \\ 0 & \text{otherwise.} \end{cases}$$

• • • • • • • • • • • •

- Let ζ be the vector of probabilities as defined before.
- Then ζ satisfies

$$\zeta_{q,m} = \sum_{m' \in \mathcal{M}} \sum_{q' \in \delta(q,m)} \mathcal{P}_{m,m'} \zeta_{q',m'}.$$

• In matrix terms, ζ satisfies $\zeta = B\zeta$, where

$$B_{\langle q,m\rangle,\langle q',m'\rangle} = \begin{cases} P_{m,m'} & \text{if } q' \in \delta(q,m) \\ 0 & \text{otherwise.} \end{cases}$$

< 🗇 🕨 < 🖻 🕨

- Let ζ be the vector of probabilities as defined before.
- Then ζ satisfies

$$\zeta_{q,m} = \sum_{m' \in \mathcal{M}} \sum_{q' \in \delta(q,m)} \mathcal{P}_{m,m'} \zeta_{q',m'}.$$

• In matrix terms, ζ satisfies $\zeta = B\zeta$, where

$$B_{\langle q,m\rangle,\langle q',m'\rangle} = \left\{ egin{array}{cc} P_{m,m'} & ext{if } q' \in \delta(q,m) \\ 0 & ext{otherwise.} \end{array}
ight.$$

Running example

- Notice that if the probability of generating an accepted word is greater than zero, then there exist prefixes such that almost every word beginning with that prefix is accepted
- Given such a prefix *p* for a UBA (*S*, *M*, δ, *Q*₀, *F*), we see that for any *m* ∈ *M*, ∑_{*q*₀∈*Q*₀} ∑_{*s*∈δ(*q*₀,*p*)} ζ_{*s*,*m*} ≥ 1. δ(*q*₀, *p*) is called a *cut*.
- But since no two co-reachable states can accept the same words, we see that $\sum_{q_0 \in Q_0} \sum_{s \in \delta(q_0, p)} \zeta_{s,m} = 1$. We call the characteristic vector of a cut a *normaliser*.
- Baier et. al. proved that it suffices to add one such equation for every recurrent SCC in *B*, equal to 1 if the SCC is accepting.

- Notice that if the probability of generating an accepted word is greater than zero, then there exist prefixes such that almost every word beginning with that prefix is accepted
- Given such a prefix p for a UBA (S, M, δ, Q_0, F) , we see that for any $m \in M$, $\sum_{q_0 \in Q_0} \sum_{s \in \delta(q_0, p)} \zeta_{s,m} \ge 1$. $\delta(q_0, p)$ is called a *cut*.
- But since no two co-reachable states can accept the same words, we see that $\sum_{q_0 \in Q_0} \sum_{s \in \delta(q_0, p)} \zeta_{s,m} = 1$. We call the characteristic vector of a cut a *normaliser*.
- Baier et. al. proved that it suffices to add one such equation for every recurrent SCC in *B*, equal to 1 if the SCC is accepting.

- Notice that if the probability of generating an accepted word is greater than zero, then there exist prefixes such that almost every word beginning with that prefix is accepted
- Given such a prefix *p* for a UBA (S, M, δ, Q₀, F), we see that for any m ∈ M, ∑_{q₀∈Q₀} ∑_{s∈δ(q₀,p)} ζ_{s,m} ≥ 1. δ(q₀, p) is called a *cut*.
- But since no two co-reachable states can accept the same words, we see that $\sum_{q_0 \in Q_0} \sum_{s \in \delta(q_0, p)} \zeta_{s,m} = 1$. We call the characteristic vector of a cut a *normaliser*.
- Baier et. al. proved that it suffices to add one such equation for every recurrent SCC in *B*, equal to 1 if the SCC is accepting.

- Notice that if the probability of generating an accepted word is greater than zero, then there exist prefixes such that almost every word beginning with that prefix is accepted
- Given such a prefix *p* for a UBA (S, M, δ, Q₀, F), we see that for any m ∈ M, ∑_{q₀∈Q₀} ∑_{s∈δ(q₀,p)} ζ_{s,m} ≥ 1. δ(q₀, p) is called a *cut*.
- But since no two co-reachable states can accept the same words, we see that $\sum_{q_0 \in Q_0} \sum_{s \in \delta(q_0, p)} \zeta_{s,m} = 1$. We call the characteristic vector of a cut a *normaliser*.
- Baier et. al. proved that it suffices to add one such equation for every recurrent SCC in *B*, equal to 1 if the SCC is accepting.

Running example

• Cuts are calculated using extenders

• Given a state q and a word w such that $\delta(q, w)$ is not a cut, an extender is a word v such that $\delta(q, v) \supseteq \{q, q'\}, q \neq q'$, and $\delta(q', w) \neq \emptyset$. Then $\delta(q, vw) \supseteq \delta(q, w)$.

- Cuts are calculated using extenders
- Given a state q and a word w such that $\delta(q, w)$ is not a cut, an extender is a word v such that $\delta(q, v) \supseteq \{q, q'\}, q \neq q'$, and $\delta(q', w) \neq \emptyset$. Then $\delta(q, vw) \supseteq \delta(q, w)$.

Extenders increase set size

▶ < E ▶ E ∽ Q C MFCS 2019 19/26

- Cuts are calculated using extenders
- Given a state q and a word w such that $\delta(q, w)$ is not a cut, an extender is a word v such that $\delta(q, v) \supseteq \{q, q'\}, q \neq q'$, and $\delta(q', w) \neq \emptyset$. Then $\delta(q, vw) \supseteq \delta(q, w)$.
- By repeatedly calculating extenders we get a word *p* such that almost any infinite word prefixed by *p* is accepted

• Cuts remain cuts, cut vectors remain cut vectors

- Sums of cut vectors also invariant under transition matrices
- Matrix semigroups with constant spectral radius have invariant affine plane (Protasov, Voynov, 2017)

- Cuts remain cuts, cut vectors remain cut vectors
- Sums of cut vectors also invariant under transition matrices
- Matrix semigroups with constant spectral radius have invariant affine plane (Protasov, Voynov, 2017)

- Cuts remain cuts, cut vectors remain cut vectors
- Sums of cut vectors also invariant under transition matrices
- Matrix semigroups with constant spectral radius have invariant affine plane (Protasov, Voynov, 2017)

• A pseudo-cut is a vector that's invariant under transition matrices

- However, if *a* is a pseudo-cut, then so are linear multiples of *a*. Finding a pseudo-cut is not sufficient for finding a normaliser.
- Solution: *Co*(*d*)-*pseudo-cuts*.

- A *pseudo-cut* is a vector that's invariant under transition matrices
- However, if *a* is a pseudo-cut, then so are linear multiples of *a*. Finding a pseudo-cut is not sufficient for finding a normaliser.
- Solution: *Co*(*d*)*-pseudo-cuts*.

- A *pseudo-cut* is a vector that's invariant under transition matrices
- However, if *a* is a pseudo-cut, then so are linear multiples of *a*. Finding a pseudo-cut is not sufficient for finding a normaliser.
- Solution: *Co*(*d*)-*pseudo-cuts*.

Deriving normalisers from Co(d)-pseudo-cuts

• *Co*(*d*)-pseudo-cuts are cuts that are 0 outside of *Co*(*d*)

- No state in Co(d) apart from d accepts words accepted by d
- Therefore, for a Co(d)-pseudo-cut v, $\frac{1}{d_v}d$ is a normaliser

- Co(d)-pseudo-cuts are cuts that are 0 outside of Co(d)
- No state in *Co*(*d*) apart from *d* accepts words accepted by *d*

- Co(d)-pseudo-cuts are cuts that are 0 outside of Co(d)
- No state in *Co*(*d*) apart from *d* accepts words accepted by *d*
- Therefore, for a Co(d)-pseudo-cut v, $\frac{1}{d_v}d$ is a normaliser

- Matrix semigroups with constant spectral radius have invariant affine plane
- Find the affine plane with BFS on M*
- *Co*(*d*)-pseudo-cuts are the vectors in the space orthogonal to the plane, intersected with *Co*(*d*)

→ ∃ →

 Matrix semigroups with constant spectral radius have invariant affine plane

Find the affine plane with BFS on M*

• *Co*(*d*)-pseudo-cuts are the vectors in the space orthogonal to the plane, intersected with *Co*(*d*)

- Matrix semigroups with constant spectral radius have invariant affine plane
- Find the affine plane with BFS on M*
- Co(d)-pseudo-cuts are the vectors in the space orthogonal to the plane, intersected with Co(d)

- Finitely ambiguous automata
- (Almost) complementation
- ...