Efficient Analysis of Unambiguous Automata Using Matrix Semigroup Techniques

S. Kiefer¹ C. Widdershoven¹

¹Department of Computer Science University of Oxford

MFCS 2019

Outline

[Introduction](#page-2-0)

- [What is model checking](#page-2-0)
- [Finite word model checking](#page-10-0)
- [Infinite word model checking](#page-25-0)

 \leftarrow

つへへ

Outline

[Introduction](#page-2-0)

• [What is model checking](#page-2-0)

- \bullet [Finite word model checking](#page-10-0)
- [Infinite word model checking](#page-25-0)

[Cuts](#page-33-0)

[Pseudo-cuts](#page-43-0)

4 0 8

 \sim \mathcal{A} ∋⇒

• Calculating possibility of a scenario happening

- Example: "It's always darkest before the dawn" \bullet
- Example: $G(darkest(x) \rightarrow Xdawn(x))$ \bullet
- Example:

4 0 1

- Calculating possibility of a scenario happening
- Example: "It's always darkest before the dawn"
- Example: $G(darkest(x) \rightarrow Xdawn(x))$ \bullet
- Example:

- Calculating possibility of a scenario happening
- Example: "It's always darkest before the dawn"
- Example: $G(darkest(x) \rightarrow Xdawn(x))$
- Example:

- Calculating possibility of a scenario happening
- Example: "It's always darkest before the dawn"
- Example: $G(darkest(x) \rightarrow Xdawn(x))$
- Example:

• Probability distribution over sequences of events

- **Generally: Markov chains**
- Example:

4 0 8

 $\mathbf{A} \oplus \mathbf{B}$ $\mathbf{A} \oplus \mathbf{B}$

- Probability distribution over sequences of events
- **Generally: Markov chains**
- Example:

4 0 8

 \Box \rightarrow \equiv \rightarrow

 \prec

- Probability distribution over sequences of events
- **Generally: Markov chains**
- **•** Example:

4 0 8 1 \leftarrow \rightarrow \equiv \rightarrow

 \sim

[Introduction](#page-2-0)

• [What is model checking](#page-2-0)

• [Finite word model checking](#page-10-0)

• [Infinite word model checking](#page-25-0)

[Cuts](#page-33-0)

[Pseudo-cuts](#page-43-0)

4 0 8

 \sim \mathcal{A} ∋⇒

o In general, PSPACE-complete

For deterministic automata, in P

4 0 8

- o In general, PSPACE-complete
- For deterministic automata, in P

4 0 8

つへへ

Given a DFA (*S*, *M*, δ, *q*0, *F*),

- a Markov chain (P, M) , with $P_{m,m'}$ denoting the probability of going to $m' \in M$ from $m \in M$.
- an initial vector *i* ∈ *M* stating the initial distribution of the Markov chain,

and a vector $\omega \in [0,1]^M$ denoting the probability of stopping the word after reading a character in *M*.

- Denote by ζ*s*,*^m* the probability of accepting a word starting with *m* in the DFA starting in *s*.
- Then the probability of generating an accepted word is P *^m*∈*^M im*ζ*q*0,*m*.

Given a DFA (S, M, δ, q_0, F) , a Markov chain (P, M) , with $P_{m,m'}$ denoting the probability of going to $m' \in M$ from $m \in M$.

an initial vector *i* ∈ *M* stating the initial distribution of the Markov chain,

and a vector $\omega \in [0,1]^M$ denoting the probability of stopping the word after reading a character in *M*.

- Denote by ζ*s*,*^m* the probability of accepting a word starting with *m* in the DFA starting in *s*.
- Then the probability of generating an accepted word is P *^m*∈*^M im*ζ*q*0,*m*.

Given a DFA (*S*, *M*, δ, *q*0, *F*),

a Markov chain (P, M) , with $P_{m,m'}$ denoting the probability of going to $m' \in M$ from $m \in M$.

an initial vector $i \in M$ stating the initial distribution of the Markov chain,

and a vector $\omega \in [0,1]^M$ denoting the probability of stopping the word after reading a character in *M*.

- Denote by ζ*s*,*^m* the probability of accepting a word starting with *m* in the DFA starting in *s*.
- Then the probability of generating an accepted word is P *^m*∈*^M im*ζ*q*0,*m*.

Given a DFA (S, M, δ, q_0, F) ,

a Markov chain (P, M) , with $P_{m,m'}$ denoting the probability of going to $m' \in M$ from $m \in M$.

an initial vector $i \in M$ stating the initial distribution of the Markov chain,

and a vector $\omega \in [0,1]^M$ denoting the probability of stopping the word after reading a character in *M*.

- Denote by ζ*s*,*^m* the probability of accepting a word starting with *m* in the DFA starting in *s*.
- Then the probability of generating an accepted word is P *^m*∈*^M im*ζ*q*0,*m*.

Given a DFA (*S*, *M*, δ, *q*0, *F*),

a Markov chain (P, M) , with $P_{m,m'}$ denoting the probability of going to $m' \in M$ from $m \in M$.

an initial vector $i \in M$ stating the initial distribution of the Markov chain,

and a vector $\omega \in [0,1]^M$ denoting the probability of stopping the word after reading a character in *M*.

- Denote by ζ*s*,*^m* the probability of accepting a word starting with *m* in the DFA starting in *s*.
- Then the probability of generating an accepted word is P *^m*∈*^M im*ζ*q*0,*m*.

• Given a DFA (*S*, *M*, *δ*, *q*₀, *F*),

a Markov chain (P, M) , with $P_{m,m'}$ denoting the probability of going to $m' \in M$ from $m \in M$.

an initial vector $i \in M$ stating the initial distribution of the Markov chain,

and a vector $\omega \in [0,1]^M$ denoting the probability of stopping the word after reading a character in *M*.

- Denote by ζ*s*,*^m* the probability of accepting a word starting with *m* in the DFA starting in *s*.
- Then the probability of generating an accepted word is $\sum_{m \in M}$ *i*_m $\zeta_{q_0,m}$.

DFA model checking

 $\mathsf{Notice\ that\ } \zeta_{q_0,m} = \omega(m) + (1-\omega(m))\sum_{m'\in M} P_{m,m'}\zeta_{\delta(q_0,m),m'}$ if $\delta(\textit{q}_0, m) \in F$ and $\zeta_{\textit{q}_0, m} = (1 - \omega(m))\sum_{m' \in M} P_{m, m'} \zeta_{\delta(\textit{q}_0, m), m'}$ otherwise.

• This leads to the following characterisation for ζ :

$$
\zeta_{q,m} = \left\{ \begin{array}{ll} \omega(m) + (1 - \omega(m)) \sum_{m' \in M} P_{m,m'} \zeta_{\delta(q,m),m'} & \text{if } \delta(q,m) \in F \\ (1 - \omega(m)) \sum_{m' \in M} P_{m,m'} \zeta_{\delta(q,m),m'} & \text{otherwise.} \end{array} \right.
$$

Solving this system of equations and calculating $\sum_{m\in M}$ *i_m* $\zeta_{\boldsymbol{q}_0,m}$ gives us a polynomial algorithm for model checking DFAs.

DFA model checking

- $\mathsf{Notice\ that\ } \zeta_{q_0,m} = \omega(m) + (1-\omega(m))\sum_{m'\in M} P_{m,m'}\zeta_{\delta(q_0,m),m'}$ if $\delta(\textit{q}_0, m) \in F$ and $\zeta_{\textit{q}_0, m} = (1 - \omega(m))\sum_{m' \in M} P_{m, m'} \zeta_{\delta(\textit{q}_0, m), m'}$ otherwise.
- This leads to the following characterisation for ζ :

$$
\zeta_{q,m} = \left\{ \begin{array}{ll} \omega(m) + (1 - \omega(m)) \sum_{m' \in M} P_{m,m'} \zeta_{\delta(q,m),m'} & \text{if } \delta(q,m) \in F \\ (1 - \omega(m)) \sum_{m' \in M} P_{m,m'} \zeta_{\delta(q,m),m'} & \text{otherwise.} \end{array} \right.
$$

Solving this system of equations and calculating $\sum_{m\in M}$ *i_m* $\zeta_{\boldsymbol{q}_0,m}$ gives us a polynomial algorithm for model checking DFAs.

nar

DFA model checking

- $\mathsf{Notice\ that\ } \zeta_{q_0,m} = \omega(m) + (1-\omega(m))\sum_{m'\in M} P_{m,m'}\zeta_{\delta(q_0,m),m'}$ if $\delta(\textit{q}_0, m) \in F$ and $\zeta_{\textit{q}_0, m} = (1 - \omega(m))\sum_{m' \in M} P_{m, m'} \zeta_{\delta(\textit{q}_0, m), m'}$ otherwise.
- This leads to the following characterisation for ζ :

$$
\zeta_{q,m} = \left\{ \begin{array}{ll} \omega(m) + (1 - \omega(m)) \sum_{m' \in M} P_{m,m'} \zeta_{\delta(q,m),m'} & \text{if } \delta(q,m) \in F \\ (1 - \omega(m)) \sum_{m' \in M} P_{m,m'} \zeta_{\delta(q,m),m'} & \text{otherwise.} \end{array} \right.
$$

Solving this system of equations and calculating $\sum_{m\in M}$ *i_m* $\zeta_{\boldsymbol{q}_0,m}$ gives us a polynomial algorithm for model checking DFAs.

nar

- In general, PSPACE-complete
- For deterministic automata, in P
- For unambiguous automata, also in P *The same algorithm works!*

- In general, PSPACE-complete
- For deterministic automata, in P
- For unambiguous automata, also in P *The same algorithm works!*

• For DFAs:

$$
\zeta_{q,m} = \left\{ \begin{array}{ll} \omega(m) + (1 - \omega(m)) \sum_{m' \in M} P_{m,m'} \zeta_{\delta(q,m),m'} & \text{if } \delta(q,m) \in F \\ (1 - \omega(m)) \sum_{m' \in M} P_{m,m'} \zeta_{\delta(q,m),m'} & \text{otherwise.} \end{array} \right.
$$

• For UFAs:

$$
\zeta_{q,m}=|\delta(q,m)\cap F|\omega(m)+(1-\omega(m))\sum_{m'\in M}\sum_{q'\in\delta(q,m)}P_{m,m'}\zeta_{q',m'}
$$

重

 \mathbf{b}

 299

イロトメ 倒 トメ 差 トメ 差

Outline

[Introduction](#page-2-0)

- [What is model checking](#page-2-0)
- \bullet [Finite word model checking](#page-10-0)
- [Infinite word model checking](#page-25-0)

[Cuts](#page-33-0)

[Pseudo-cuts](#page-43-0)

4 0 8

 \sim \mathcal{A} B

o In general, PSPACE-complete

- For deterministic automata, in P
- For unambiguous automata, in P (Baier et. al., 2016)

4 0 8

- In general, PSPACE-complete
- For deterministic automata, in P
- For unambiguous automata, in P (Baier et. al., 2016)

- In general, PSPACE-complete
- For deterministic automata, in P
- For unambiguous automata, in P (Baier et. al., 2016)

\bullet Let ζ be the vector of probabilities as defined before. \bullet Then ζ satisfies

$$
\zeta_{q,m}=\sum_{m'\in M}\sum_{q'\in\delta(q,m)}P_{m,m'}\zeta_{q',m'}.
$$

• In matrix terms, ζ satisfies $\zeta = B\zeta$, where

$$
B_{\langle q,m \rangle, \langle q',m' \rangle} = \begin{cases} P_{m,m'} & \text{if } q' \in \delta(q,m) \\ 0 & \text{otherwise.} \end{cases}
$$

4 0 8

 \rightarrow \pm \rightarrow

 \leftarrow \leftarrow \leftarrow

- \bullet Let ζ be the vector of probabilities as defined before.
- Then ζ satisfies

$$
\zeta_{q,m}=\sum_{m'\in M}\sum_{q'\in\delta(q,m)}P_{m,m'}\zeta_{q',m'}.
$$

• In matrix terms, ζ satisfies $\zeta = B\zeta$, where

$$
B_{\langle q,m \rangle, \langle q',m' \rangle} = \begin{cases} P_{m,m'} & \text{if } q' \in \delta(q,m) \\ 0 & \text{otherwise.} \end{cases}
$$

4 0 8

A B -4 B +

- \bullet Let ζ be the vector of probabilities as defined before.
- Then ζ satisfies

$$
\zeta_{q,m}=\sum_{m'\in M}\sum_{q'\in\delta(q,m)}P_{m,m'}\zeta_{q',m'}.
$$

• In matrix terms, ζ satisfies $\zeta = B\zeta$, where

$$
B_{\langle q,m \rangle, \langle q',m' \rangle} = \left\{ \begin{array}{ll} P_{m,m'} & \text{if } q' \in \delta(q,m) \\ 0 & \text{otherwise.} \end{array} \right.
$$

Running example

イロトメ 倒 トメ 差 トメ 差

 \mathbf{b}

- • Notice that if the probability of generating an accepted word is greater than zero, then there exist prefixes such that almost every word beginning with that prefix is accepted
- \bullet Given such a prefix p for a UBA (S, M, δ, Q_0, F) , we see that for any $m \in M$, $\sum_{q_0 \in Q_0} \sum_{s \in \delta(q_0,\rho)} \zeta_{s,m} \geq 1$. $\delta(q_0,\rho)$ is called a cut .
- But since no two co-reachable states can accept the same words, we see that $\sum_{q_0\in Q_0}\sum_{s\in \delta(q_0,\rho)}\zeta_{s,m}=$ 1. We call the characteristic vector of a cut a *normaliser*.
- Baier et. al. proved that it suffices to add one such equation for every recurrent SCC in *B*, equal to 1 if the SCC is accepting.

- Notice that if the probability of generating an accepted word is greater than zero, then there exist prefixes such that almost every word beginning with that prefix is accepted
- Given such a prefix p for a UBA (S, M, δ, Q_0, F) , we see that for any $m \in M$, $\sum_{q_0 \in Q_0} \sum_{s \in \delta(q_0,\rho)} \zeta_{s,m} \geq 1.$ $\delta(q_0,\rho)$ is called a cut .
- **•** But since no two co-reachable states can accept the same words, we see that $\sum_{q_0\in Q_0}\sum_{s\in \delta(q_0,\rho)}\zeta_{s,m}=$ 1. We call the characteristic vector of a cut a *normaliser*.
- Baier et. al. proved that it suffices to add one such equation for every recurrent SCC in *B*, equal to 1 if the SCC is accepting.

- Notice that if the probability of generating an accepted word is greater than zero, then there exist prefixes such that almost every word beginning with that prefix is accepted
- Given such a prefix p for a UBA (S, M, δ, Q_0, F) , we see that for any $m \in M$, $\sum_{q_0 \in Q_0} \sum_{s \in \delta(q_0,\rho)} \zeta_{s,m} \geq 1.$ $\delta(q_0,\rho)$ is called a cut .
- But since no two co-reachable states can accept the same words, we see that $\sum_{q_0\in\mathit{O}_0}\sum_{s\in\delta(q_0,\rho)}\zeta_{s,m}=$ 1. We call the characteristic vector of a cut a *normaliser*.
- Baier et. al. proved that it suffices to add one such equation for every recurrent SCC in *B*, equal to 1 if the SCC is accepting.

- Notice that if the probability of generating an accepted word is greater than zero, then there exist prefixes such that almost every word beginning with that prefix is accepted
- Given such a prefix p for a UBA (S, M, δ, Q_0, F) , we see that for any $m \in M$, $\sum_{q_0 \in Q_0} \sum_{s \in \delta(q_0,\rho)} \zeta_{s,m} \geq 1.$ $\delta(q_0,\rho)$ is called a cut .
- But since no two co-reachable states can accept the same words, we see that $\sum_{q_0\in\mathit{O}_0}\sum_{s\in\delta(q_0,\rho)}\zeta_{s,m}=$ 1. We call the characteristic vector of a cut a *normaliser*.
- Baier et. al. proved that it suffices to add one such equation for every recurrent SCC in *B*, equal to 1 if the SCC is accepting.

Running example

イロトメ 倒 トメ 差 トメ 差

重

 \mathbf{b}

• Cuts are calculated using extenders

• Given a state *q* and a word *w* such that $\delta(q, w)$ is not a cut, an extender is a word v such that $\delta(\bm{q},\bm{v})\supseteq\{\bm{q},\bm{q}'\},\,\bm{q}\neq\bm{q}',$ and $\delta(q', w) \neq \emptyset$. Then $\delta(q, vw) \supsetneq \delta(q, w)$.

- Cuts are calculated using extenders
- **•** Given a state *q* and a word *w* such that $\delta(q, w)$ is not a cut, an extender is a word $\mathsf{\nu}$ such that $\delta(\mathsf{q},\mathsf{\nu})\supseteq\{\mathsf{q},\mathsf{q}'\},\mathsf{q}\neq\mathsf{q}',$ and $\delta(q', w) \neq \emptyset$. Then $\delta(q, vw) \supsetneq \delta(q, w)$.

Extenders increase set size

重

 \mathbf{b}

 299

 \mathcal{A} 舌

K ロ ⊁ K 伊 ⊁ K 走 ⊁

- Cuts are calculated using extenders
- **Given a state q and a word w such that** $\delta(\mathbf{q}, \mathbf{w})$ **is not a cut, an** extender is a word v such that $\delta(\boldsymbol{q},\boldsymbol{\nu})\supseteq\{\boldsymbol{q},\boldsymbol{q}'\},$ $\boldsymbol{q}\neq\boldsymbol{q}'$, and $\delta(q', w) \neq \emptyset$. Then $\delta(q, vw) \supsetneq \delta(q, w)$.
- By repeatedly calculating extenders we get a word *p* such that almost any infinite word prefixed by *p* is accepted

• Cuts remain cuts, cut vectors remain cut vectors

- Sums of cut vectors also invariant under transition matrices
- Matrix semigroups with constant spectral radius have invariant affine plane (Protasov, Voynov, 2017)

- • Cuts remain cuts, cut vectors remain cut vectors
- Sums of cut vectors also invariant under transition matrices
- Matrix semigroups with constant spectral radius have invariant affine plane (Protasov, Voynov, 2017)

- Cuts remain cuts, cut vectors remain cut vectors
- Sums of cut vectors also invariant under transition matrices
- Matrix semigroups with constant spectral radius have invariant affine plane (Protasov, Voynov, 2017)

A *pseudo-cut* is a vector that's invariant under transition matrices

- However, if *a* is a pseudo-cut, then so are linear multiples of *a*. Finding a pseudo-cut is not sufficient for finding a normaliser.
- Solution: *Co*(*d*)*-pseudo-cuts*.

- A *pseudo-cut* is a vector that's invariant under transition matrices
- However, if *a* is a pseudo-cut, then so are linear multiples of *a*. Finding a pseudo-cut is not sufficient for finding a normaliser.
- Solution: *Co*(*d*)*-pseudo-cuts*.

- A *pseudo-cut* is a vector that's invariant under transition matrices
- However, if *a* is a pseudo-cut, then so are linear multiples of *a*. Finding a pseudo-cut is not sufficient for finding a normaliser.
- Solution: *Co*(*d*)*-pseudo-cuts*.

Deriving normalisers from *Co*(*d*)-pseudo-cuts

Co(*d*)-pseudo-cuts are cuts that are 0 outside of *Co*(*d*)

- No state in *Co*(*d*) apart from *d* accepts words accepted by *d*
- Therefore, for a *Co*(*d*)-pseudo-cut *v*, 1 $\frac{1}{d_v}$ *d* is a normaliser

- *Co*(*d*)-pseudo-cuts are cuts that are 0 outside of *Co*(*d*)
- No state in *Co*(*d*) apart from *d* accepts words accepted by *d*
- Therefore, for a *Co*(*d*)-pseudo-cut *v*, 1 $\frac{1}{d_v}$ *d* is a normaliser

- *Co*(*d*)-pseudo-cuts are cuts that are 0 outside of *Co*(*d*)
- No state in *Co*(*d*) apart from *d* accepts words accepted by *d*
- Therefore, for a $Co(d)$ -pseudo-cut $v, \frac{1}{d}$ $\frac{1}{d_{\rm v}}$ *d* is a normaliser

- Matrix semigroups with constant spectral radius have invariant affine plane
- Find the affine plane with BFS on *M*[∗]
- *Co(d)*-pseudo-cuts are the vectors in the space orthogonal to the plane, intersected with *Co*(*d*)

Matrix semigroups with constant spectral radius have invariant affine plane

Find the affine plane with BFS on *M*[∗]

• *Co(d)*-pseudo-cuts are the vectors in the space orthogonal to the plane, intersected with *Co*(*d*)

- Matrix semigroups with constant spectral radius have invariant affine plane
- Find the affine plane with BFS on *M*[∗]
- Co(d)-pseudo-cuts are the vectors in the space orthogonal to the plane, intersected with *Co*(*d*)

- Finitely ambiguous automata
- (Almost) complementation
- ...

4 ロ ト ィ *同* ト

 \sim ÷