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The Membership problem

Input: A finite collection G of n× n matrices and a “target”
matrix M .

Question: Does M belong to 〈G〉

, that is, does there exist a
sequence of matrices M1,M2, . . . ,Mk ∈ G such that

M = M1M2 · · ·Mk

The Membership problem is called:

the Mortality problem if the target M is the zero matrix,

the Identity problem if the target M is the identity matrix.
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Known results

Let SL(2,Z) = {A ∈ Z2×2 : det(A) = 1}.

The Mortality problem (and hence the Membership problem)
is undecidable for 3× 3 integer matrices. [Paterson, 1970]

The membership problem is decidable for commuting matrices
over algebraic numbers [Babai, et. al., 1996]

The Membership problem is decidable in SL(2,Z).
[P. Silva, 2002; Choffrut and Karhumäki, 2005]
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Known results

The Membership problem is decidable for 2× 2 nonsingular
integer matrices. [Semukhin and Potapov, 2017]

The Identity problem is undecidable in SL(4,Z).
[Bell and Potapov, 2010]

It is an open question whether the Membership (or the
Identity) problem is decidable in SL(3,Z).
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Known results

The Heisenberg group H(3,Z) is a natural subgroup of SL(3,Z)
that consists of the matrices of the form1 a c

0 1 b
0 0 1

 where a, b, c ∈ Z.

The Identity problem in H(3,Z) is decidable in PTIME.
[Ko, Niskanen, Potapov, 2018]

In fact, this result holds in H(3,Q).
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Theorem

The Membership problem in H(3,Q) is decidable.

The Membership problem in H(3,Q) is reducible to H(3,Z).

For M =

1 a c
0 1 b
0 0 1

 define ϕ(M) = (a, b).

ϕ : H(3,Z)→ Z× Z is a homomorphism, that is,

ϕ(M1M2) = ϕ(M1) + ϕ(M2).
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Suppose G = {M1, . . . ,Mk} ⊆ H(3,Z) is the given set of
generators and M ∈ H(3,Z).

We partition G = G+ ∪ G0 and compute a bound K such that:

Any Mi ∈ G+ can be used at most K times in any product of
generators from G that is equal to M .

There is a sequence A1, . . . , Am ∈ G0 such that

ϕ(A1 · · ·Am) = (0, 0).

In this case there is no bound on how many times a matrix
from G0 can appear in a product which is equal to M .
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Let G = {M1, . . . ,Mk} and suppose that for i = 1, . . . , k

Mi =

1 ai ci
0 1 bi
0 0 1



Define the cone

C = Cone{ϕ(M1), . . . , ϕ(Mk)} = {(a1, b1), . . . , (ak, bk)}.
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C

Figure: C is a pointed cone

In this case G+ = G and
G0 = ∅.

Every matrix from G = G+ can
be used at most K times to
reach the target M .

C

Figure: C is a half-plane

In this case the matrices from
G0 commute.

The problem can be reduced to
a system of linear Diophantine
equations.
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C

Figure: C is the whole plane: G0 = G, G+ = ∅.

Using the fact that there are non-commuting matrices in G0 we
can show that there is an integer m > 0 such that1 0 m

0 1 0
0 0 1

 and

1 0 −m
0 1 0
0 0 1

 are in 〈G0〉.
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Hence M =

1 a c
0 1 b
0 0 1

 ∈ 〈G〉 iff

1 a d
0 1 b
0 0 1

 ∈ 〈G〉 for some d ≡ c (mod m).

This is because1 a d
0 1 b
0 0 1

1 0 ±m
0 1 0
0 0 1

 =

1 a d±m
0 1 b
0 0 1


To check whether G contains such a matrix we will use a register
automaton A.
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The alphabet of A is G = {M1, . . . ,Mk}.

The states of A are triples (s, t, u) such that
s, t, u ∈ {0, . . . ,m− 1}, and (0, 0, 0) is the initial state.

A has two integer registers that are initially zeros.

The transitions of A are defined in such a way that after
reading a word

Mi1 · · ·Mik =

1 a′ c′

0 1 b′

0 0 1


the automaton moves to the state

(a′, b′, c′) (mod m)

and the value of the registers becomes equal to (a′, b′).
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The final state is

(a, b, c) (mod m)

where M =

1 a c
0 1 b
0 0 1



Hence if the registers of A can reach the value (a, b) at the final
state, then there is a product

Mi1 · · ·Mik =

1 a d
0 1 b
0 0 1

 for some d ≡ c (mod m).

Recall that this is equivalent to M ∈ 〈G〉.
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After reading any Mi, the resisters of A are updated by
constant values, namely, by (ai, bi).

A does not have zero checks, and the registers can be positive
or negative.

For such automata the set of register values reachable at any
given state is effectively semilinear.

So we can decide whether (a, b) can be reached at the final
state of A, and hence decide whether M ∈ 〈G〉.

Thank you!
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