

On the Complexity of Reachability in Parametric MDPs

Guillermo A. Pérez

with Tobias Winkler, S. Junges, J.-P. Katoen

Parametric Markov models

Main contributions

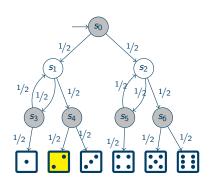
Open problems

Conclusion

Knuth-Yao Die

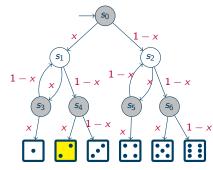
Simulate 6-sided die by repeatedly throwing a **fair** coin

$$Pr\left(reach \ \ \ \ \right) = 1/6 \ \checkmark$$



Knuth-Yao Die with parametric coin

What if the coin is a little bit unfair?

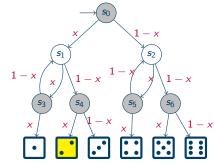


$$Pr\left(reach \ \ \ \ \ \ \right) = ?$$

$$x \in \left[\frac{49}{100}, \frac{51}{100}\right] \ \stackrel{?}{\Longrightarrow} \ Pr\left(reach \ \ \ \ \ \right) \in \left[\frac{9}{60}, \frac{11}{60}\right]$$

Knuth-Yao Die with parametric coin

What if the coin is a little bit unfair?



$$Pr\left(\textit{reach} \overset{\bullet}{\bullet}\right) = \frac{x^2 - x^3}{x^2 - x + 1}$$

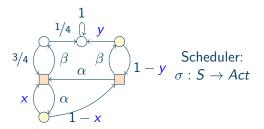
$$x \in \left[\frac{49}{100}, \frac{51}{100}\right] \overset{?}{\Longrightarrow} Pr\left(\textit{reach} \overset{\bullet}{\bullet}\right) \in \left[\frac{9}{60}, \frac{11}{60}\right]$$

Definition (Daws '05, Lanotte et al. '07)

► A parametric MDP is an MDP that contains <u>parametric</u> probabilistic branchings of the form

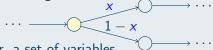


where $x \in Var$, a set of variables.



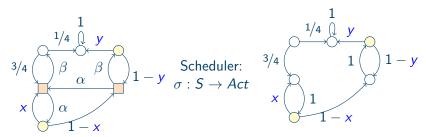
Definition (Daws '05, Lanotte et al. '07)

► A parametric MDP is an MDP that contains <u>parametric</u> probabilistic branchings of the form



where $x \in Var$, a set of variables.

► A parametric Markov chain is the special case without non-determinism.



Why parametric models matter

- Exact probabilities often not available
- Interval models too pessimistic



- ► Extensive tool support
 - dedicated tools: PARAM [Hahn et al. '10], PROPhESY [Dehnert et al. '15]
 - ▶ general purpose prob. model checkers: *PRISM*, *STORM*, *ePMC*

Many open complexity questions

2 basic formal decision problems

▶ $\exists \text{Reach} \iff \exists \vec{x}: \qquad Pr(reach ©) \ge 1/2?$ (for MCs)

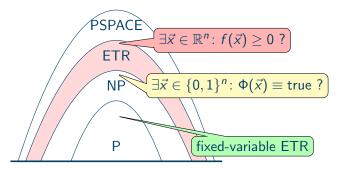
▶ $\exists \forall \text{Reach} \iff \exists \vec{x} \forall \sigma : Pr(reach ©) \ge 1/2?$ (for MDPs)

Theorem				
	# params fixed	# params arbitrary		
∃Reach	in P [HBK'17]	ETR-complete	\leftarrow <i>Only</i> \geq , \leq	
∃∀Reach	in NP	ETR-complete	$\leftarrow \geq$, \leq , $>$, $<$	

► Further variants in paper

ETR as a complexity class

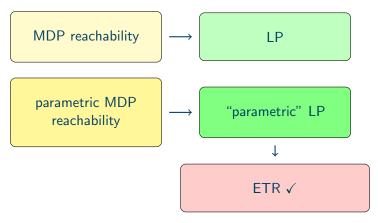
ETR = \exists -fragment of the FO theory $(\mathbb{R}, +, \cdot, 0, 1, <)$



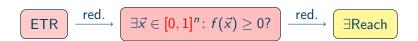
Also ETR-complete

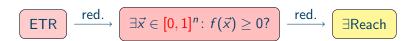
Several problems about Nash equilibria in 3-player games, planar graph drawing, and others regarding topology and geometry

∃∀Reach is in ETR

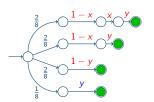


 $\boxed{\mathsf{ETR}} \xrightarrow{\mathsf{red.}} \boxed{\exists \vec{x} \in \mathbb{R}^n \colon f(\vec{x}) \geq 0?} \xrightarrow{\mathsf{red.}} \boxed{\exists \mathsf{Reach}}$





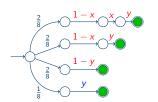
$$-2x^2y+y-5\geq 0$$



ETR
$$\xrightarrow{\text{red.}}$$
 $\exists \vec{x} \in [0,1]^n : f(\vec{x}) \ge 0?$ $\xrightarrow{\text{red.}}$ $\exists \text{Reach}$

$$-2x^{2}y + y - 5 \ge 0$$
(rewrite) \updownarrow

$$2((1-x)xy + (1-x)y + (1-y) - 1) + y \ge 5$$



$$\boxed{\mathsf{ETR}} \xrightarrow{\mathsf{red.}} \boxed{\exists \vec{x} \in [0,1]^n \colon f(\vec{x}) \geq 0?} \xrightarrow{\mathsf{red.}} \boxed{\exists \mathsf{Reach}}$$

$$-2x^{2}y + y - 5 \ge 0$$

$$(rewrite) \updownarrow$$

$$2((1-x)xy + (1-x)y + (1-y) - 1) + y \ge 5$$

$$(scale) \updownarrow$$

$$\frac{2}{8}(1-x)xy + \frac{2}{8}(1-x)y + \frac{2}{8}(1-y) + \frac{1}{8}y \ge \frac{2 \cdot 1 + 5}{8}$$
sum of coefficients < 1

This "trick" was first observed in [Chonev arXiv '17]

Practice: often just a few parameters

Recall: fixed-variable ETR in P

	# params fixed	# params arbitrary
∃Reach	in P [HBK'17]	ETR-complete
∃∀Reach	in NP	ETR-complete

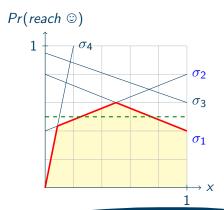
Lower complexity for fixed number of parameters \checkmark

$\exists \forall Reach is in NP (fixed # of params)$

- ► Use good parameters as polynomial certificate?
- ► Use a scheduler instead which one?

$\exists \forall Reach is in NP (fixed # of params)$

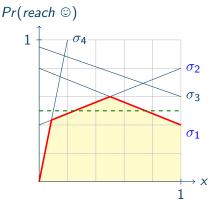
- ► Use good parameters as polynomial certificate?
- ▶ Use a scheduler instead which one? \rightarrow a minimal one



$\exists \forall Reach is in NP (fixed # of params)$

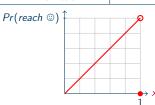
- ► Use good parameters as polynomial certificate?
- ► Use a scheduler instead which one? → a minimal one

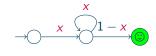
Check σ via fixed-param ETR query



More refined results in paper

		# params	# params arbitrary	
		fixed	well-defined, $[0,1]$	graph-preserving, $(0,1)$
()	∃Reach ^{≥/≤}	in P	— ETR-complete —	
pMC	$\exists Reach^{>}$	"	NP-hard	$\exists Reach^{>}_{\mathrm{wd}}$ -complete
٥	$\exists Reach^{<}$	"	"	∃Reach _{wd} -complete
	∃∃Reach ^{≥/≤}	in NP	— ETR-	complete —
占	∃∃Reach ^{>}	"	— $\exists Reach^{>}_{\mathrm{wd}}$ -complete —	
pMDP	∃∃Reach<	"	$\exists Reach^<_{\mathrm{wd}}\text{-}complete$	$\exists Reach^{>}_{\mathrm{wd}}-hard$
<u> </u>	∃∀Reach [⋈]	in NP	— ETR-	complete —





More refined results in paper

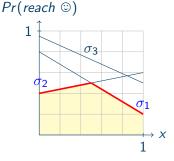
		# params	# params arbitrary	
		fixed	well-defined, $[0,1]$	graph-preserving, $(0,1)$
()	∃Reach ^{≥/≤}	in P	— ETR-complete —	
pMC	∃Reach ^{>}	"	NP-hard	$\exists Reach^{>}_{\mathrm{wd}}$ -complete
٥	∃Reach<	"	"	∃Reach _{wd} -complete
	∃∃Reach ^{≥/≤}	in NP	— ETR-	complete —
pMDP	∃∃Reach ^{>}	"	— ∃Reach	$_{ m wd}^{>}$ -complete —
Σ	∃∃Reach<	"	$\exists Reach^{<}_{\mathrm{wd}}\text{-}complete$	$\exists Reach^{>}_{wd}-hard$
<u> </u>	∃∀Reach [™]	in NP	— ETR-	complete —

Additionally: Robust strategies, i.e. $\exists \sigma \forall \vec{x} : Pr(reach@) \geq \frac{1}{2}$ under deterministic memoryless schedulers

1. Better complexity bounds

	# params fixed	
∃Reach	in P [HBK'17]	
∃∀Reach	in NP ← tight?	

Can we show a *coNP* upper bound on fixed-param- $\exists \forall$ Reach?

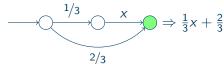


 $\{\sigma_1, \sigma_2\} = \text{minimal optimal}$ scheduler set

 \exists polynomially sized optimal scheduler set $\implies \exists \forall Reach \in coNP$

2. Connection pMC \longleftrightarrow polynomials

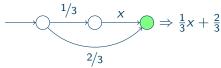
- ► Pr(reach ②) is a polynomial for acyclic pMCs
- For which polynomials f is there a pMC with Pr(reach ©) = f? No pMC for $-2x^2y + y - 5$



No pMC for
$$-2x^2y + y - 5$$

2. Connection pMC \longleftrightarrow polynomials

- ► Pr(reach ©) is a polynomial for acyclic pMCs
- For which polynomials f is there a pMC with Pr(reach ©) = f? No pMC for $-2x^2y + y - 5$



No pMC for
$$-2x^2y + y - 5$$

For univariate f

If $f(x) \in (0,1)$ for $x \in (0,1)$, then there is a pMC with Pr(reach ©) = f.

Questions:

- ► How big is the resulting pMC? (lower bounds)
- ► What about multivariate polynomials?

Acyclic Markov chains with parametric $\times/1$ - \times transitions are already hard, even for *graph-preserving* parameter valuations.

Any Boolean combination of *polynomial* constraints can be encoded into a pMC reachability problem.

A *fixed number of parameters* implies lower complexity for both pMCs & pMDPs.

Thank you for your attention!