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U— Knuth-Yao Die

Simulate 6-sided die by
repeatedly throwing a fair
coin

Pr (reach ] ) =16 v
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H- Knuth-Yao Die with parametric coin

What if the coin is a little
bit unfair?

Pr (reach L] ) =7

49 51 ? ) 9 11
€ [100,100] = Pr (reach ) € [ }




Hv Knuth-Yao Die with parametric coin

What if the coin is a little
bit unfair?

Pr (reach (] ) — =3

x2—x+1
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Definition (Daws '05, Lanotte et al. '07)

> A parametric MDP is an MDP that contains parametric

probabilistic branchings of the form
X

° = 1—x

where x € Var, a set of variables.

Scheduler:
Y 5.5 Act




Definition (Daws '05, Lanotte et al. '07)

> A parametric MDP is an MDP that contains parametric

probabilistic branchings of the form
X

° = 1—x

where x € Var, a set of variables.

» A parametric Markov chain is the special case without
non-determinism.

1
Ya )y

Scheduler: 34 1—y
Y 5.5 Act
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U— Why parametric models matter

» Exact probabilities often
not available

» Interval models too
pessimistic

49, .51]: heads 49, .51]: heads
[ ] @[ ]
» Extensive tool support

» dedicated tools: PARAM [Hahn et al. '10],

49, 51]
PROPhESY [Dehnert et al. '15]

» general purpose prob. model checkers: PRISM, STORM, ePMC

Many open complexity questions
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U— 2 basic formal decision problems

> JReach <& 3x: Pr(reach ®) > 1/27 (for MCs)
> JI¥Reach €% 3% Vo Pr(reach ®) > 1/27 (for MDPs)

‘ #* params fixed ‘ # params arbitrary

JReach in P [HBK'17] ETR-complete < Only >, <

dVReach in NP ETR-complete — > <, >, <

» Further variants in paper
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U— ETR as a complexity class

ETR = 3-fragment of the FO theory (R, +,-,0,1, <)

NPSY3% € {0,1}7: O(%) = true 7]

fixed-variable ETR

Also ETR-complete

Several problems about Nash equilibria in 3-player games, planar
graph drawing, and others regarding topology and geometry
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H’ dVReach is in ETR

( N

MDP reachability — Lp
~ )
( N

parametric MDP

reachability - parametric” LP

‘ ETR v |




> JReach is ETR-hard

d.
LNE=
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> JReach is ETR-hard

(o . d
ETR i‘ﬂxe[O,l]”:f(x)ZO? L




> JReach is ETR-hard

- > d
ETR | -4 axe[o,u";f(x)zm’L

2’y +y—-5>0




> JReach is ETR-hard

ETR ‘EIxe[Ol]" f()>o?’Ld'>

2’y +y—-5>0
(rewrite) &
201 =x)xy +(1=x)y+(1-y)—1)+y>5




> JReach is ETR-hard

ETR ‘EIxe[Ol]" f()>o?’Ld'>

2’y +y—-5>0

(rewrite) &
2((17X)Xy+(1fx)y+(1,y)71)+y25
(scale)

sum of coefficients <1

This “trick” was first observed in [Chonev arXiv '17]
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U— Practice: often just a few parameters

Recall: fixed-variable ETR in P

‘ # params fixed ‘

JReach in P [HBK'17]
dVReach in NP

{ Lower complexity for fixed number of parameters v/ J
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U— IWReach is in NP (fixed # of params)

» Use good parameters as polynomial certificate?

» Use a scheduler instead — which one?




U— IWReach is in NP (fixed # of params)

>

» Use a scheduler instead — which one? — a minimal one

Pr(reach ®)

1+ 04




U— IWReach is in NP (fixed # of params)

>

» Use a scheduler instead — which one? — a minimal one
Pr(reach ®)

1+ 04

Check o via fixed-param ETR query

/\Pr”(reach ® from s)

s,a

< Z P(s,a,s’) Pr’(reach ® from s’) o1

fixed-param rational funct.
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U— More refined results in paper

# params # params arbitrary
fixed well-defined, [0, 1] [ graph-preserving, (0,1)

O JReach=/= in P — ETR-complete —
S  JReach” i NP-hard JReach’  -complete
S 3JReach< " ” JReach;-complete

J3Reach=/= | in NP — ETR-complete —
& 33Reach” " — JReach; ;-complete —
= 33Reach® § JReachy;,-complete | JReach’ ;-hard

IVReach™ in NP — ETR-complete —

Pr(reach ©)




U— More refined results in paper

# params # params arbitrary
fixed well-defined, [0, 1] [ graph-preserving, (0,1)

O JReach=/= in P — ETR-complete —
S  JReach” i NP-hard JReach’  -complete
S 3JReach< " ” JReach;-complete

J3Reach=/= | in NP — ETR-complete —
& 33Reach” " — JReach; ;-complete —
= 33Reach® § JReachy;,-complete | JReach’ ;-hard

IVReach™ in NP — ETR-complete —

Additionally: Robust strategies, i.e. 30VX: Pr(reach®) > % under
deterministic memoryless schedulers
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U— 1. Better complexity bounds

‘ # params fixed ‘

Pr(reach ®)

1 1
JReach in P [HBK'17] 03
JVReach | in NP <« tight? dn
o1
Can we show a colNP 1 X
upper bound on fixed- o ]
param-3VReach ? {o1,02} = minimal optimal

scheduler set

[EI polynomially sized optimal scheduler sset = dVReach € coNPj




U— 2. Connection pMC <— polynomials

» Pr(reach ®) is a polynomial for
acyclic pMCs
» For which polynomials f is there

a pMC with Pr(reach ®) = f? No pMC for —2x%y +y —5




U— 2. Connection pMC <— polynomials

1/3 x
» Pr(reach ®) is a polynomial for Q) O = %x + %
acyclic pMCs
» For which polynomials f is there ?/3

a pMC with Pr(reach ®) = f? No pMC for —2x%y +y —5

For univariate f
If f(x) € (0,1) for x € (0,1), then there is a pMC with
Pr(reach ®) = f.

Questions:
» How big is the resulting pMC? (lower bounds)

> What about multivariate polynomials?
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( 0
Acyclic Markov chains with parametric x/1-x transitions are

already hard, even for graph-preserving parameter valuations.
= J

p
Any Boolean combination of polynomial constraints can be
encoded into a pMC reachability problem.

= J

A fixed number of parameters implies lower complexity for
both pMCs & pMDPs.

Thank you for your attention!
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