Cellular Automata for the Self-stabilisation of Colourings and Tilings

Irène Marcovici, Siamak Taati, Nazim Fatès

Nancy Univ. (FR), Groeningen Univ. (NL), Inria Nancy (FR)

Reachability Problems - Brussels - Sept. 2019

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Context & leading question

Turing, The chemical basis of morophogenesis, 1952.

living organisms are **robust** noise creates **patterns**

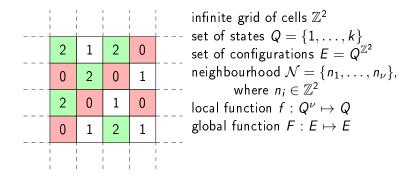
context:

discrete-time systems & two-dimensional infinite grids

ション ふゆ く 山 マ チャット しょうくしゃ

 Λ : set of admissible configurations self-stabilisation as a **reachability problem**: start from Λ , perturb, return to Λ with **local rules** only?

Our problem in the context of cellular automata

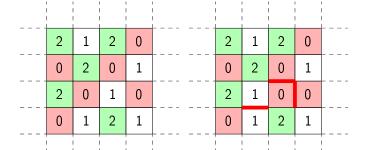


k-coulouring subshift

$$\Lambda_k = \{x \in E : c, c' \in \mathbb{Z}^2, ||c - c'||_1 = 1 \implies x_c \neq x_{c'}\}.$$

・ロト ・ 四ト ・ 日ト ・ 日 ・

self-stabilisation & self-correction

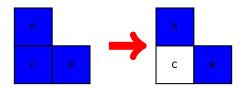


 Λ : set of admissible configurations (here *k*-coulourings) A CA *F* is self-stabilising on Λ if:

- elements of Λ are fixed points of F;
- starting from any configuration which is a finite perturbation of an element of Λ, we go back to Λ.

challenge: use only *local* information

the binary case k=2



$$f(n,c,e) = egin{cases} 1-c & ext{if } n=c=e, \ c & ext{otherwise.} \end{cases}$$

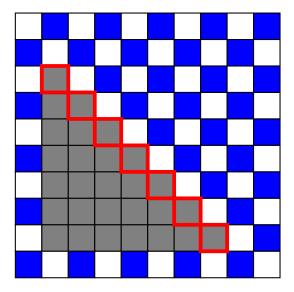
$$\forall (i,j) \in \mathbb{Z}^2, F(x)_{i,j} = f(x_{i,j+1}, x_{i,j}, x_{i+1,j}).$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Theorem

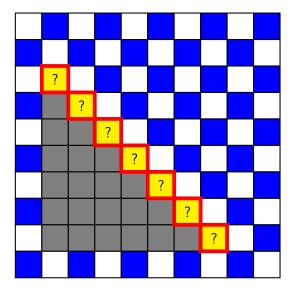
F is self-correcting on Λ_2

proof of the binary case



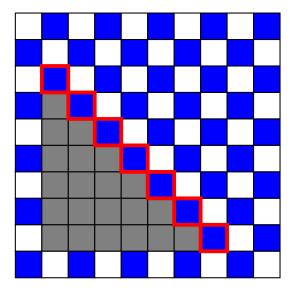
◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへで

proof of the binary case



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

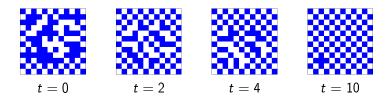
proof of the binary case



・ロト (四) (目) (日) (日) (日)

k = 2: stochastic and isotropic

$$arphi(c,n,e,s,w) = egin{cases} \mathsf{minority}\,(c,n,e,s,w) & \mathsf{with \ prob.}\ lpha \ c & \mathsf{with \ prob.}\ 1-lpha \end{cases}$$



Theorem

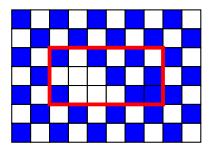
The cellular automaton defined above is self-stabilising on Λ_2 .

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

k = 2: stochastic and isotropic

Theorem

The cellular automaton defined above is self-stabilising on Λ_2 .

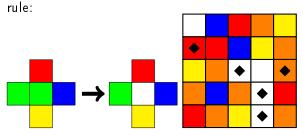


key: inside the rectangle, we have an absorbing Markov chain

 $\alpha\text{-}\mathsf{asynchronism}$ ensures that there are no deadlocks...

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Five colors or more: $k \ge 5$

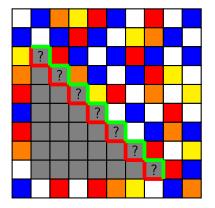


correction : take a colour that is not present among the colours of the four neighbours

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

local rule : apply the correction only for the cells which have a NE-error.

Five colors or more



proof :

some cells will change their states, others will remain

Once again, we enclose the erros in a triangle and show that it can only decrease.

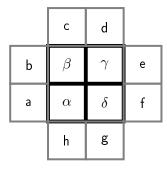
▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

The four-colour case: k = 4

Local corrections by synchronising squares of cells prop:

for all the settings a,\ldots,h there exists values for $\alpha,\beta,\gamma,\delta$ s.t. the pattern has no conflicts

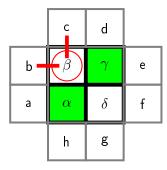
◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@



The four-colour case: k = 4

Local corrections by synchronising squares of cells prop:

for all the settings a,\ldots,h there exists values for $\alpha,\beta,\gamma,\delta$ s.t. the pattern has no conflicts

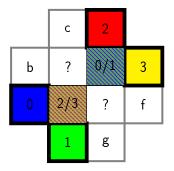


• if we can set $\alpha = \gamma$

 β and δ have at most three surrounding colours ; choose the remaining colour.

ション ふゆ アメリア メリア しょうくの

the four-coulour case (continued)



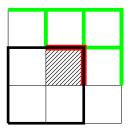
cells cannot have a four-coloured neighb.

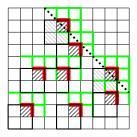
a conflict is not avoidable only if a cell has necesssarily *four* neighbouring colours

if we try to create such a situation, we have $b \neq c$ and $g \neq f$, we find a solution in each case

ション ふゆ アメリア メリア しょうくの

applying the corrections





Apply the correction to the four cells *simultaneously* if:

- red borders contain one or two mistakes,
- green borders have no mistake.

the shape of the "neighbourhood" ensures that no conflicting updates occur corrections by diagonals (sweeping)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The isotropic and stochastic case: k = 4

von Neumann neighb. (nearest neighb.), rule φ :

- if the four colours are not present (in NESW), choose one missing colour
- otherwise, choose one colour randomly (different from yourself)

local rule f : apply ϕ with probability $\alpha=1/2$ and identity with probability $1-\alpha=1/2$

conjecture

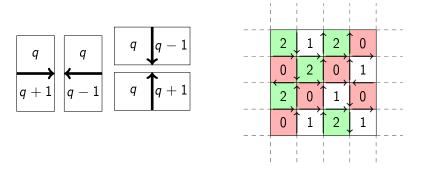
f is self-correcting on Λ_4

simulations show **amazing** convergence properties... yet to be fully understood

A challenge : three-colour case k = 3

conjecture : extra states are needed to define a self-correcting rule

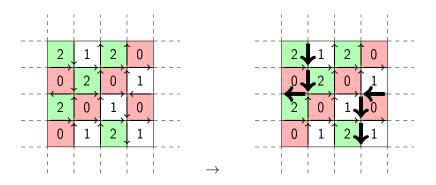
key idea by Irène M. : conversion to the six-vertex model



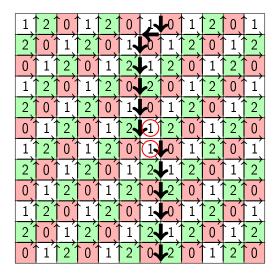
error-free 3-colouring \equiv two incoming & outgoing arrows per node

ション ふゆ アメリア メリア しょうくの

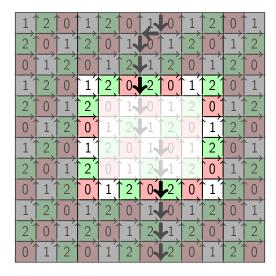
elementary properties of the six-vertex model

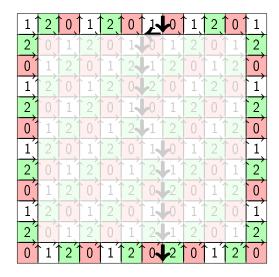


error-free 3-colouring \equiv two incoming & outgoing arrows per node knowledge of South and West arrows is sufficient \rightarrow distinguished they necessarily form a sequence of connected paths

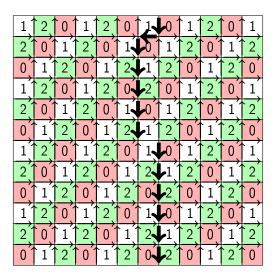


▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで





◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで



difficult to imagine how to do this without extra symbols...

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

perspectives

- first exploration of self-stabilisation properties in cellular automata...
- explore the case k = 3 with extra states ; understand more precisely the absence "limited-horizon" correction
- deterministic vs. stochastic cellular automata: simplicity, isotropy, computing abilities...

ション ふゆ く 山 マ チャット しょうくしゃ

- generalise from k-colourings to subshifts
- generalise to more general tilings or graphs...