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1Introduction

Overview
I (Generalized) Partial Order Reductions for games.
I Stable (Strategy Preserving) Reductions.

I Stable reductions for Petri net games.

I Experiments
I Conclusion

Setting
2-player Reachability games
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2Partial Order Reductions

I Pruning of redundant action interleavings.
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4Preliminaries - Game Labelled Transition System

I Game Labelled Transition System (GLTS): G = (S,A1,A2,→,Goal)
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I en1(s) = {a ∈ A1 | ∃s′ ∈ S. s a−→ s′} for s ∈ S.
I Similar definition for en2(s).
I Example: en1(p2p3) = {b} and en2(p2p3) = {c}.
I en(s) = en1(s) ∪ en2(s).
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4Preliminaries - Reduction

I Game Labelled Transition System (GLTS): G = (S,A1,A2,→,Goal)

I Reduction: St : S → 2A

s
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I Example: St(s) = {c, e}
I Reduced GLTS: GSt = (S,A1,A2,−→

St
,Goal)

I s a−→
St

s′ iff s a−→ s′ and a ∈ St(s)
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I Game Labelled Transition System (GLTS): G = (S,A1,A2,→,Goal)
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4Preliminaries - Strategy

Strategy: σ : S → A1 ∪ {⊥}
I σ(s) = ⊥ implies en1(s) = ∅
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Example
σ(p1p2) = b, σ(p1) = a and σ(p3) = ⊥.
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4Preliminaries - Winning Strategies

I Paths: π = s0s1 · · · and i ∈ N0

I Maximal runs from a state s subject to a strategy: Πmax
G,σ(s)

Winning Strategies
σ is winning from s, iff
I for all π ∈ Πmax

G,σ(s) there exists a position i s.t. πi ∈ Goal
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5Reachability Conditions

Purpose
Iff s ∈ S is winning in G then s is winning in Gst

Conditions
I I : No reduction for mixed states
I W : Non-stubborn transitions commute
I R : (Sufficient) Preservation of reachability
I G1 and G2 : Preservation of paths to mixed states
I S : Safety from mixed states
I C : Preservation of P2-cycles
I D : Preservation of Deadlocks
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6Reachability Conditions

Theorem
If St satisfies I, W, R, G1, G2, S, C, D then for all s ∈ S state s is winning for
the controller in G iff state s is winning for the controller in GSt .
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7Reachability Conditions - Mixed States

I I: If s is a mixed state then en(s) ⊆ St(s).
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I Example: State p2p3 is a mixed state.
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8Reachability Conditions - Commutativity

I W: For all w ∈ St(s)
∗

and all a ∈ St(s) if s wa−→ s′ then s aw−→ s′.
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I Example: St(p1p2) = {a} is sufficient to satisfy W.
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9Reachability Conditions - Reachability

I R: As(Goal) ⊆ St(s) for some interesting set of actions As(Goal).
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I If s /∈ Goal , w = a1 · · · an, s w−→ s′, and s′ ∈ Goal then there exists
1 ≤ i ≤ n s.t. ai ∈ As(Goal).

I Example: Either Ap1p2 ({p3}) = {a} or Ap1p2 ({p3}) = {b} are both viable
interesting sets.
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10Reachability Conditions - Game 1

I G1: If en2(s) = ∅, then for all w ∈ St(s)
∗

where s w−→ s′ then en2(s′) = ∅.
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I Paths to mixed or environment states are preserved.
I G2 is symmetric.
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11Reachability Conditions - Safe

I S: en1(s) ∩ St(s) ⊆ safe(s) or en1(s) ⊆ St(s).
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I a ∈ A1 is safe in s if whenever w ∈ (A1 \ {a})∗ and s w−→ s′ and
en2(s′) = ∅ and s aw−→ s′′ then en2(s′′) = ∅.

I Actions shifted to the front due to W may never lead to mixed or
environment states.
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12Reachability Conditions - Deadlock & Cycle

I C: For all a ∈ A2 if there exists w ∈ Aω2 s.t. s w−→ and a occurs infinitely
often in w then a ∈ St(s).
I In order to preserve infinite paths of environment actions in the reduced

GLTS.
I D: If en2(s) 6= ∅ then there exists a ∈ en2(s) ∩ St(s) s.t. for all

w ∈ St(s)
∗

where s w−→ s′ we have a ∈ en2(s′).
I In order to preserve deadlocks in the reduced GLTS.
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13Petri Net Games

Instationation to Petri Net Games
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14Petri Net Games - Mixed States & Commutativity

Mixed states
I If en1(M) 6= ∅ and en2(M) 6= ∅ then en(M) ⊆ St(M).

Transition Commutativity

I W: For all w ∈ St(M)
∗

and all t ∈ St(M) if M wt−→ M ′ then M tw−→ M ′.

t t
•

•
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14Petri Net Games - Preserving Environment Cycles

Conditions G1 and G2
If en2(M) = ∅ then T2 ⊆ St(M).
Symmetric for Player 2.
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15Petri Net Games - Reachable & Safe

Condition R
I If goals are all markings where there is 0 tokens in p2 then all the

transitions that decrease the number of tokens in p2 are interesting.
I {a} is a sufficient interesting set for this goal.

• p2•p1

p3 ab

c

Condition S

Lemma
If t+ ∩ •T2 = ∅ and −t ∩ ◦T2 = ∅ then t is safe in any marking.

I b is not safe since it contributes tokens to p3.



|

16Petri Net Games - Preserving Environment Cycles

Condition C
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I Finite = {}
I Marked = {}
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16Petri Net Games - Preserving Environment Cycles

Condition C

• p1

• p2

p3

t1

t2

I Finite = {p1, t1, p3}
I Marked = {p1, p2, p3}

I A transition t may occur infinitely often if t /∈ Finite and all its pre-places
can be marked •t ⊆ Marked .

I If t can occur infinitly often, t ∈ St(s).
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17Implementation & TAPAAL

I Implemented in the TAPAAL verification tool suite.
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18Models

I (MW) Manufacturing Workflow.
I Scaled on the number of requested features.

I (OW) Order Workflow.
I Scaled on re-initialising.

I (NIM) Nim.
I Scaled on the number of allowed pebbles and the allowable amount to add

each round.
I (PCP) Producer Consumer System.

I Scaled on the number of producers and consumers.
I (AIM) Autonomous Intersection Management.

I Scaled on the number of cars, intersections, lane length, and speeds.
I (Lyngby) Railway Scheduling Problem.

I Scaled on the number of moving trains.
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19Experiments

Time (seconds) Markings ×1000 Reduction
Model NORMAL POR NORMAL POR %T %M
MW-40 735.2 0.2 69439 9 100 100
MW-50 1952.0 0.2 135697 11 100 100
MW-60 4417.0 0.3 234570 13 100 100
OW-10000 0.9 0.7 320 240 22 25
OW-100000 11.1 7.8 3200 2400 30 25
OW-1000000 137.7 109.8 32000 24000 20 25
NIM-5-49500 9.2 3.4 5054 892 63 82
NIM-7-49500 32.7 3.9 24039 1159 88 95
NIM-9-49500 165.1 4.7 114235 1522 97 99
NIM-11-49500 710.7 8.2 533516 1877 99 100



|

20Experiments

Time (seconds) Markings ×1000 Reduction
Model NORMAL POR NORMAL POR %T %M

PCS-2-2 24.0 19.9 9629 6554 17 32
PCS-2-3 116.1 90.9 61990 39114 22 37
PCS-2-4 399.1 283.3 240510 145109 29 40
AIM-13-100-6-11 117.9 46.6 1702 514 60 70
AIM-13-100-6-16 173.9 63.2 2464 746 64 70
AIM-13-150-9-16 337.0 219.9 3696 2454 35 34
AIM-13-150-9-21 408.0 294.1 4853 3331 28 31
AIM-14-150-9-16 449.9 278.4 4259 2865 38 33
AIM-15-150-9-16 534.5 384.9 4861 3204 28 34
LyngbySmall-2 3.4 1.0 1803 444 71 75
LyngbySmall-3 23.1 26.1 11473 10701 -13 7
LyngbySmall-4 144.3 193.3 65371 70008 -34 -7
Lyngby-2 3292.0 215.5 1511749 87214 93 94
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21Conclusion

I Partial Order Reduction for Games
I Stable (Strategy Preserving)

I Reductions for both players
I Implemented in TAPAAL

I Encouraging experimental results

Future Work
I Timed Games?

Related Work
Start Pruning When Time Gets Urgent:

Partial Order Reduction for Timed Systems (CAV’18)

F. M. Bønneland, P. G. Jensen, K. G. Larsen, M. Muñiz and J. Srba
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