Partial Order Reduction for Reachability Games

September 12, 2019

Frederik M. Bønneland, Peter G. Jensen, Kim G. Larsen, Marco Muñiz, and Jiří Srba

> Department of Computer Science Aalborg University

> > Denmark

Introduction

Overview

- \blacktriangleright (Generalized) Partial Order Reductions for games.
- ▶ Stable (Strategy Preserving) Reductions.
	- \blacktriangleright Stable reductions for Petri net games.
- \blacktriangleright Experiments
- \triangleright Conclusion

Setting

2-player Reachability games

\blacktriangleright Pruning of redundant action interleavings.

Partial Order Reductions 3 and 3 α

Partial Order Reductions 3 and 3 α

\blacktriangleright Pruning of redundant action interleavings.

 \triangleright Game Labelled Transition System (GLTS): *G* = (*S*, A_1 , A_2 , →, *Goal*)

- \triangleright *en*₁(*s*) = {*a* ∈ *A*₁ | ∃*s*' ∈ *S*. *s* $\stackrel{a}{\rightarrow}$ *s*'} for *s* ∈ *S*.
- \blacktriangleright Similar definition for $en_2(s)$.
- **Example**: $en_1(p_2p_3) = \{b\}$ and $en_2(p_2p_3) = \{c\}$.
- \blacktriangleright *en*(*s*) = *en*₁(*s*) ∪ *en*₂(*s*).

Preliminaries - Reduction ⁴

▶ Game Labelled Transition System (GLTS): $G = (S, A_1, A_2, \rightarrow, Goal)$

▶ Reduction: $St : S \rightarrow 2^A$

► Example:
$$
St(s) = \{c, e\}
$$

\n▶ Reduceed GLTS: $G_{St} = (S, A_1, A_2, \frac{ }{St}, Good)$

$$
\triangleright \ \ s \xrightarrow[St]{a} s' \text{ iff } s \xrightarrow{a} s' \text{ and } a \in St(s)
$$

Preliminaries - Reduction ⁴

▶ Game Labelled Transition System (GLTS): $G = (S, A_1, A_2, \rightarrow, Goal)$

▶ Reduction: $St : S \rightarrow 2^A$

- \blacktriangleright **Example**: $St(s) = \{c, e\}$
- ▶ Reduced GLTS: $G_{St} = (S, A_1, A_2, \frac{)}{St},$ *Goal*)

$$
\triangleright \ \ s \xrightarrow[St]{a} s' \text{ iff } s \xrightarrow{a} s' \text{ and } a \in St(s)
$$

▶ Game Labelled Transition System (GLTS): $G = (S, A_1, A_2, \rightarrow, Goal)$

▶ Reduction: $St : S \rightarrow 2^A$

► Example:
$$
St(s) = \{c, e\}
$$

\n▶ reduced GLTS: $G_{St} = (S, A_1, A_2, \frac{\rightarrow}{st}, Goal)$

$$
\triangleright \ \ s \xrightarrow[St]{a} s' \text{ iff } s \xrightarrow{a} s' \text{ and } a \in St(s)
$$

Preliminaries - Strategy ⁴

Strategy: $\sigma : \mathcal{S} \to A_1 \cup \{\perp\}$

 \triangleright *σ*(*s*) = ⊥ implies *en*₁(*s*) = ∅

Example

 $\sigma(p_1p_2) = b$, $\sigma(p_1) = a$ and $\sigma(p_3) = \perp$.

 \blacktriangleright Maximal runs from a state *s* subject to a strategy: $\Pi_{G,\sigma}^{max}(s)$

Winning Strategies

σ is winning from *s*, iff

 \blacktriangleright for all π ∈ Π^{*max*}</sup>(*s*) there exists a position *i* s.t. π _{*i*} ∈ *Goal*

Purpose

Iff $s \in S$ is winning in *G* then *s* is winning in G_{st}

Conditions

- ▶ **I** : No reduction for mixed states
- \triangleright **W** \cdot Non-stubborn transitions commute
- ▶ **R** : (Sufficient) Preservation of reachability
- ► G1 and G2 : Preservation of paths to mixed states
- ▶ S : Safety from mixed states
- ► C : Preservation of *P*2-cycles
- ▶ **D** : Preservation of Deadlocks

Theorem

If St *satisfies I, W, R, G1, G2, S, C, D then for all s* ∈ S *state s is winning for the controller in G iff state s is winning for the controller in* G_{St} *.*

Example: State p_2p_3 is a mixed state.

▶ **W**: For all $w \in \overline{St(s)}^*$ and all $a \in St(s)$ if $s \stackrel{wa}{\longrightarrow} s'$ then $s \stackrel{aw}{\longrightarrow} s'$.

Example: $St(p_1p_2) = \{a\}$ is sufficient to satisfy W.

I **R**: *As*(*Goal*) ⊆ *St*(*s*) for some interesting set of actions *As*(*Goal*).

- If $s \notin$ *Goal*, $w = a_1 \cdots a_n$, $s \stackrel{w}{\rightarrow} s'$, and $s' \in$ *Goal* then there exists 1 ≤ *i* ≤ *n* s.t. *aⁱ* ∈ *As*(*Goal*).
- ▶ **Example**: Either $A_{p_1p_2}(\{p_3\}) = \{a\}$ or $A_{p_1p_2}(\{p_3\}) = \{b\}$ are both viable interesting sets.

► G1: If $en_2(s) = \emptyset$, then for all $w \in \overline{St(s)}^*$ where $s \stackrel{w}{\to} s'$ then $en_2(s') = \emptyset$.

- \blacktriangleright Paths to mixed or environment states are preserved.
- ► G2 is symmetric.

\triangleright **S**: *en*₁(*s*) ∩ *St*(*s*) ⊂ *safe*(*s*) or *en*₁(*s*) ⊂ *St*(*s*).

- ► $a \in A_1$ is safe in *s* if whenever $w \in (A_1 \setminus \{a\})^*$ and $s \stackrel{w}{\to} s'$ and $en_2(s') = \emptyset$ and $s \stackrel{aw}{\longrightarrow} s''$ then $en_2(s'') = \emptyset$.
- ▶ Actions shifted to the front due to **W** may never lead to mixed or environment states.
- ► **C**: For all $a \in A_2$ if there exists $w \in A_2^{\omega}$ s.t. $s \stackrel{w}{\to}$ and a occurs infinitely often in *w* then $a \in St(s)$.
	- \blacktriangleright In order to preserve infinite paths of environment actions in the reduced GLTS.
- ▶ **D**: If $en_2(s) \neq \emptyset$ then there exists $a \in en_2(s) \cap St(s)$ s.t. for all $w \in \overline{St(s)}^*$ where $s \stackrel{w}{\rightarrow} s'$ we have $a \in en_2(s')$.
	-
	- \blacktriangleright In order to preserve deadlocks in the reduced GLTS.

Instationation to Petri Net Games

Mixed states

▶ If *en*₁(*M*) \neq *Ø* and *en*₂(*M*) \neq *Ø* then *en*(*M*) ⊆ *St*(*M*).

Transition Commutativity

► W: For all $w \in \overline{St(M)}^*$ and all $t \in St(M)$ if $M \stackrel{wt}{\longrightarrow} M'$ then $M \stackrel{tw}{\longrightarrow} M'.$

Conditions G1 and G2 If $en_2(M) = \emptyset$ then $T_2 \subseteq St(M)$.

Symmetric for Player 2.

Petri Net Games - Reachable & Safe

Condition R

- If goals are all markings where there is 0 tokens in p_2 then all the transitions that decrease the number of tokens in p_2 are interesting.
- \blacktriangleright {a} is a sufficient interesting set for this goal.

Condition S

Lemma

If $t^+ \cap {}^{\bullet}T_2 = \emptyset$ *and* $-t \cap {}^{\circ}T_2 = \emptyset$ *then t is safe in any marking.*

 \triangleright *b* is *not* safe since it contributes tokens to p_3 .

Condition C

Condition C \bullet *p*₁ \bullet p_2 *p*3 *t*1 t₂

 \blacktriangleright *Finite* = {} \blacktriangleright *Marked* = {}

- \blacktriangleright *Finite* = { p_1 }
- \blacktriangleright *Marked* = {}

- \blacktriangleright *Finite* = { p_1, t_1 }
- \blacktriangleright *Marked* = {}

- \blacktriangleright *Finite* = { p_1, t_1, p_3 }
- \blacktriangleright *Marked* = {}

- ▶ *Finite* = { p_1, t_1, p_3 }
- \blacktriangleright *Marked* = { p_1, p_2 }

- ▶ *Finite* = { p_1, t_1, p_3 }
- \blacktriangleright *Marked* = { p_1, p_2, p_3 }

Condition C

- ▶ *Finite* = { p_1, t_1, p_3 }
- \blacktriangleright *Marked* = { p_1, p_2, p_3 }
- I A transition *t* may occur infinitely often if *t* ∈/ *Finite* and all its pre-places can be marked • *t* ⊆ *Marked*.
- If *t* can occur infinitly often, $t \in St(s)$.

Implementation & TAPAAL

\blacktriangleright Implemented in the TAPAAL verification tool suite.

Select Mode: Click/drag to select objects: drag to move them

Models \blacksquare and \blacksquare

- \blacktriangleright Scaled on the number of requested features.
- ▶ (OW) Order Workflow.
	- \blacktriangleright Scaled on re-initialising.
- \blacktriangleright (NIM) Nim.
	- \triangleright Scaled on the number of allowed pebbles and the allowable amount to add each round.
- ▶ (PCP) Producer Consumer System.
	- \triangleright Scaled on the number of producers and consumers.
- \blacktriangleright (AIM) Autonomous Intersection Management.
	- \triangleright Scaled on the number of cars, intersections, lane length, and speeds.
- ▶ (Lyngby) Railway Scheduling Problem.
	- \triangleright Scaled on the number of moving trains.

Conclusion

- ▶ Partial Order Reduction for Games
	- ▶ Stable (Strategy Preserving)
- \blacktriangleright Reductions for both players
- \blacktriangleright Implemented in TAPAAL
- \blacktriangleright Encouraging experimental results

Future Work

 \blacktriangleright Timed Games?

Related Work

Start Pruning When Time Gets Urgent: Partial Order Reduction for Timed Systems (CAV'18)

F. M. Bønneland, P. G. Jensen, K. G. Larsen, M. Muñiz and J. Srba