Partial Order Reduction for Reachability Games

September 12, 2019

Frederik M. Bønneland, <u>Peter G. Jensen</u>, Kim G. Larsen, Marco Muñiz, and Jiří Srba

Department of Computer Science Aalborg University

Denmark

Introduction

Overview

- ► (Generalized) Partial Order Reductions for games.
- Stable (Strategy Preserving) Reductions.
 - Stable reductions for Petri net games.
- ► Experiments
- Conclusion

Setting

2-player Reachability games

Those UNIVERST

Pruning of redundant action interleavings.

Transferrent Burger

3

Pruning of redundant action interleavings.

► Game Labelled Transition System (GLTS): $G = (S, A_1, A_2, \rightarrow, Goal)$

- $en_1(s) = \{a \in A_1 \mid \exists s' \in S. \ s \xrightarrow{a} s'\}$ for $s \in S$.
- Similar definition for $en_2(s)$.
- **Example**: $en_1(p_2p_3) = \{b\}$ and $en_2(p_2p_3) = \{c\}$.
- ▶ $en(s) = en_1(s) \cup en_2(s).$

Preliminaries - Reduction

► Game Labelled Transition System (GLTS): $G = (S, A_1, A_2, \rightarrow, Goal)$

▶ Reduction: $St : S \rightarrow 2^A$

► **Example**:
$$St(s) = \{c, e\}$$

► Reduced GLTS: $G_{St} = (S, A_1, A_2, \xrightarrow{s_t}, Goal)$

•
$$s \xrightarrow{a}_{St} s'$$
 iff $s \xrightarrow{a} s'$ and $a \in St(s)$

Preliminaries - Reduction

• Game Labelled Transition System (GLTS): $G = (S, A_1, A_2, \rightarrow, Goal)$

▶ Reduction: $St : S \rightarrow 2^A$

- ► **Example**: *St*(*s*) = {*c*, *e*}
- ▶ Reduced GLTS: $G_{St} = (S, A_1, A_2, \xrightarrow{St}, Goal)$

•
$$s \xrightarrow{a}_{St} s'$$
 iff $s \xrightarrow{a} s'$ and $a \in St(s)$

► Game Labelled Transition System (GLTS): $G = (S, A_1, A_2, \rightarrow, Goal)$

▶ Reduction: $St : S \rightarrow 2^A$

▶ Example:
$$St(s) = \{c, e\}$$

▶ Reduced GLTS: $G_{St} = (S, A_1, A_2, \xrightarrow{st}, Goal)$

•
$$s \xrightarrow[St]{a} s'$$
 iff $s \xrightarrow[a]{a} s'$ and $a \in St(s)$

Preliminaries - Strategy

Strategy: $\sigma : S \to A_1 \cup \{\bot\}$

• $\sigma(s) = \bot$ implies $en_1(s) = \emptyset$

Example

 $\sigma(p_1p_2) = b, \sigma(p_1) = a \text{ and } \sigma(p_3) = \bot.$

• Maximal runs from a state *s* subject to a strategy: $\Pi_{G,\sigma}^{max}(s)$

Winning Strategies

 σ is winning from $\textbf{\textit{s}},$ iff

• for all $\pi \in \prod_{G,\sigma}^{max}(s)$ there exists a position *i* s.t. $\pi_i \in Goal$

Purpose

Iff $s \in S$ is winning in *G* then *s* is winning in G_{st}

Conditions

- I : No reduction for mixed states
- W : Non-stubborn transitions commute
- ► R : (Sufficient) Preservation of reachability
- ▶ G1 and G2 : Preservation of paths to mixed states
- ► S : Safety from mixed states
- ► C : Preservation of P2-cycles
- ▶ D : Preservation of Deadlocks

Theorem

If St satisfies I, W, R, G1, G2, S, C, D then for all $s \in S$ state s is winning for the controller in G iff state s is winning for the controller in G_{st} .

Example: State p_2p_3 is a mixed state.

• W: For all $w \in \overline{St(s)}^*$ and all $a \in St(s)$ if $s \xrightarrow{wa} s'$ then $s \xrightarrow{aw} s'$.

• **Example**: $St(p_1p_2) = \{a\}$ is sufficient to satisfy **W**.

▶ **R**: $A_s(Goal) \subseteq St(s)$ for some interesting set of actions $A_s(Goal)$.

- ▶ If $s \notin Goal$, $w = a_1 \cdots a_n$, $s \xrightarrow{w} s'$, and $s' \in Goal$ then there exists $1 \leq i \leq n$ s.t. $a_i \in A_s(Goal)$.
- **Example**: Either $A_{\rho_1\rho_2}(\{\rho_3\}) = \{a\}$ or $A_{\rho_1\rho_2}(\{\rho_3\}) = \{b\}$ are both viable interesting sets.

▶ **G1**: If $en_2(s) = \emptyset$, then for all $w \in \overline{St(s)}^*$ where $s \xrightarrow{w} s'$ then $en_2(s') = \emptyset$.

Paths to mixed or environment states are preserved.

► **G2** is symmetric.

- ▶ $a \in A_1$ is safe in *s* if whenever $w \in (A_1 \setminus \{a\})^*$ and $s \xrightarrow{w} s'$ and $en_2(s') = \emptyset$ and $s \xrightarrow{aw} s''$ then $en_2(s'') = \emptyset$.
- Actions shifted to the front due to W may never lead to mixed or environment states.

- ▶ C: For all $a \in A_2$ if there exists $w \in A_2^{\omega}$ s.t. $s \xrightarrow{w}$ and a occurs infinitely often in w then $a \in St(s)$.
 - In order to preserve infinite paths of environment actions in the reduced GLTS.
- ▶ D: If $en_2(s) \neq \emptyset$ then there exists $a \in en_2(s) \cap St(s)$ s.t. for all
 - $w \in \overline{St(s)}^*$ where $s \xrightarrow{w} s'$ we have $a \in en_2(s')$.
 - In order to preserve deadlocks in the reduced GLTS.

Instationation to Petri Net Games

Mixed states

• If $en_1(M) \neq \emptyset$ and $en_2(M) \neq \emptyset$ then $en(M) \subseteq St(M)$.

Transition Commutativity

▶ W: For all $w \in \overline{St(M)}^*$ and all $t \in St(M)$ if $M \xrightarrow{wt} M'$ then $M \xrightarrow{tw} M'$.

Conditions G1 and G2 If $en_2(M) = \emptyset$ then $T_2 \subseteq St(M)$.

Symmetric for Player 2.

Condition R

- If goals are all markings where there is 0 tokens in p₂ then all the transitions that decrease the number of tokens in p₂ are interesting.
- ► {a} is a sufficient interesting set for this goal.

Condition S

Lemma

If $t^+ \cap \bullet T_2 = \emptyset$ and $-t \cap \circ T_2 = \emptyset$ then t is safe in any marking.

b is *not* safe since it contributes tokens to p_3 .

Finite = {}
Marked = {}

Condition C

Finite = {}
Marked = {}

- ► Finite = {p₁}
- ► *Marked* = {}

- *Finite* = { p_1, t_1 }
- ► *Marked* = {}

- Finite = $\{p_1, t_1, p_3\}$
- ► *Marked* = {}

- Finite = $\{p_1, t_1, p_3\}$
- ► Marked = {p₁, p₂}

- Finite = $\{p_1, t_1, p_3\}$
- Marked = $\{p_1, p_2, p_3\}$

Condition C

- Finite = $\{p_1, t_1, p_3\}$
- Marked = $\{p_1, p_2, p_3\}$
- A transition t may occur infinitely often if t ∉ Finite and all its pre-places can be marked *t ⊆ Marked.
- ▶ If *t* can occur infinitly often, $t \in St(s)$.

Implementation & TAPAAL

► Implemented in the TAPAAL verification tool suite.

Select Mode: Click/drag to select objects; drag to move them

- Scaled on the number of requested features.
- (OW) Order Workflow.
 - Scaled on re-initialising.
- ► (NIM) Nim.
 - Scaled on the number of allowed pebbles and the allowable amount to add each round.
- (PCP) Producer Consumer System.
 - Scaled on the number of producers and consumers.
- (AIM) Autonomous Intersection Management.
 - Scaled on the number of cars, intersections, lane length, and speeds.
- (Lyngby) Railway Scheduling Problem.
 - Scaled on the number of moving trains.

	Time (seconds)		Markings $\times 1000$		Reduction	
Model	NORMAL	POR	NORMAL	POR	%T	%M
MW-40	735.2	0.2	69439	9	100	100
MW-50	1952.0	0.2	135697	11	100	100
MW-60	4417.0	0.3	234570	13	100	100
OW-10000	0.9	0.7	320	240	22	25
OW-100000	11.1	7.8	3200	2400	30	25
OW-1000000	137.7	109.8	32000	24000	20	25
NIM-5-49500	9.2	3.4	5054	892	63	82
NIM-7-49500	32.7	3.9	24039	1159	88	95
NIM-9-49500	165.1	4.7	114235	1522	97	99
NIM-11-49500	710.7	8.2	533516	1877	99	100

Experiments

	Time (seconds)		Markings ×1000		Reduction	
Model	NORMAL	POR	NORMAL	POR	%T	%M
PCS-2-2	24.0	19.9	9629	6554	17	32
PCS-2-3	116.1	90.9	61990	39114	22	37
PCS-2-4	399.1	283.3	240510	145109	29	40
AIM-13-100-6-11	117.9	46.6	1702	514	60	70
AIM-13-100-6-16	173.9	63.2	2464	746	64	70
AIM-13-150-9-16	337.0	219.9	3696	2454	35	34
AIM-13-150-9-21	408.0	294.1	4853	3331	28	31
AIM-14-150-9-16	449.9	278.4	4259	2865	38	33
AIM-15-150-9-16	534.5	384.9	4861	3204	28	34
LyngbySmall-2	3.4	1.0	1803	444	71	75
LyngbySmall-3	23.1	26.1	11473	10701	-13	7
LyngbySmall-4	144.3	193.3	65371	70008	-34	-7
Lyngby-2	3292.0	215.5	1511749	87214	93	94

Conclusion

Partial Order Reduction for Games

- Stable (Strategy Preserving)
- Reductions for both players
- Implemented in TAPAAL
- Encouraging experimental results

Future Work

► Timed Games?

Related Work

Start Pruning When Time Gets Urgent: Partial Order Reduction for Timed Systems (CAV'18)

F. M. Bønneland, P. G. Jensen, K. G. Larsen, M. Muñiz and J. Srba