Coverability is Undecidable in One-dimensional Pushdown Vector Addition Systems with Resets

Sylvain Schmitz¹² Georg Zetzsche³

¹LSV, ENS-Paris-Saclay & CNRS, Université Paris-Saclay, France

²IUF, France

³Max Planck Institute for Software Systems (MPI-SWS), Germany

Reachability Problems 2019

Configurations: $Q \times \mathbb{N} \times \mathbb{N}$ \boxplus_i increment counter i \boxminus_i decrement counter i

Configurations: $Q \times \mathbb{N} \times \mathbb{N}$ \boxplus_i increment counter i \boxminus_i decrement counter i

Reachability problem

Given Configuration (q, m, n)

Question $(q_0, 0, 0) \stackrel{*}{\rightarrow} (q, m, n)$?

Configurations: $Q \times \mathbb{N} \times \mathbb{N}$ \boxplus_i increment counter i \boxminus_i decrement counter i

Reachability problem

Given Configuration (q, m, n)

Question $(q_0, 0, 0) \stackrel{*}{\rightarrow} (q, m, n)$?

Coverability problem

Given State q

Question $(q_0, 0, 0) \stackrel{*}{\rightarrow} (q, m, n)$ for some $m, n \in \mathbb{N}$?

Extensions of $\mathbb N$ counters

\mathbb{N}	\mathbb{N}_{r}	\mathbb{N}_t	\mathbb{N}_{z}	PD	Cov./Reach.
					N
					\mathbb{N}_{r}
					\mathbb{N}_{t}
					\mathbb{N}_{z}
					PD

\mathbb{N}	\mathbb{N}_{r}	\mathbb{N}_t	\mathbb{N}_{z}	PD	Cov./Reach.
D/D	D/D	D/D	D/D		N
	D/D	D/D	D/D		\mathbb{N}_{r}
			U/U	U/U	\mathbb{N}_{t}
			U/U	U/U	\mathbb{N}_{z}
				U/U	PD

Finkel and Sutre, STACS 2000

\mathbb{N}	\mathbb{N}_{r}	\mathbb{N}_t	\mathbb{N}_{z}	PD	Cov./Reach.
D/D	D/D	D/D	D/D		N
	D/D	D/D	D/D		\mathbb{N}_{r}
		D/D	U/U	U/U	\mathbb{N}_{t}
			U/U	U/U	\mathbb{N}_{z}
				U/U	PD

Finkel and Sutre, STACS 2000

\mathbb{N}	\mathbb{N}_{r}	\mathbb{N}_t	\mathbb{N}_{z}	PD	Cov./Reach.
D/D	D/D	D/D	D/D	D/??	N
	D/D	D/D	D/D		\mathbb{N}_{r}
		D/D	U/U	U/U	\mathbb{N}_{t}
			U/U	U/U	\mathbb{N}_{z}
				U/U	PD

- Finkel and Sutre, STACS 2000
- Leroux, Sutre, and Totzke, ICALP 2015

\mathbb{N}	\mathbb{N}_{r}	\mathbb{N}_t	\mathbb{N}_{z}	PD	Cov./Reach.
D/D	D/D	D/D	D/D	D/??	N
	D/D	D/D	D/D	U/U	\mathbb{N}_{r}
		D/D	U/U	U/U	\mathbb{N}_{t}
			U/U	U/U	\mathbb{N}_{z}
				U/U	PD

- Finkel and Sutre, STACS 2000
- Leroux, Sutre, and Totzke, ICALP 2015

\mathbb{N}	\mathbb{N}_{r}	\mathbb{N}_{t}	\mathbb{N}_{z}	PD	Cov./Reach.
D/D	D/D	D/D	D/D	D/??	N
	D/D	D/D	D/D	U/U	\mathbb{N}_{r}
		D/D	U/U	U/U	\mathbb{N}_{t}
			U/U	U/U	\mathbb{N}_{z}
				U/U	PD

- Finkel and Sutre, STACS 2000
- Leroux, Sutre, and Totzke, ICALP 2015

Theorem

Coverability is undecidable for $PD + \mathbb{N}_r$.

\mathbb{N}	\mathbb{N}_{r}	\mathbb{N}_t	\mathbb{N}_{z}	PD	Cov./Reach
D/D	D/D	D/D	D/D	D/??	N
	D/D	D/D	D/D	U/U	\mathbb{N}_{r}
		D/D	U/U	U/U	\mathbb{N}_{t}
			U/U	U/U	\mathbb{N}_{z}
				U/U	PD

- Finkel and Sutre, STACS 2000
- Leroux, Sutre, and Totzke, ICALP 2015

Theorem

Coverability is undecidable for $PD + N_r$.

ullet Still decidable with \mathbb{N}_z instead of PD

\mathbb{N}	\mathbb{N}_{r}	\mathbb{N}_t	\mathbb{N}_{z}	PD	Cov./Reach
D/D	D/D	D/D	D/D	D/??	N
	D/D	D/D	D/D	U/U	\mathbb{N}_{r}
		D/D	U/U	U/U	\mathbb{N}_{t}
			U/U	U/U	\mathbb{N}_{z}
				U/U	PD

- Finkel and Sutre, STACS 2000
- Leroux, Sutre, and Totzke, ICALP 2015

Theorem

Coverability is undecidable for $PD + N_r$.

- ullet Still decidable with \mathbb{N}_z instead of PD
- Undecidability that must exploit pushdown

Theorem (Minsky 1961)

Reachability is undecidable in $\mathbb{N}_z + \mathbb{N}_z$.

Theorem (Minsky 1961)

Reachability is undecidable in $\mathbb{N}_z + \mathbb{N}_z$.

Encoding

$$(n_1,n_2)\mapsto 2^{n_1}\cdot 3^{n_2}$$

Theorem (Minsky 1961)

Reachability is undecidable in $\mathbb{N}_z + \mathbb{N}_z$.

Encoding

$$(n_1, n_2) \mapsto 2^{n_1} \cdot 3^{n_2}$$

Theorem (Minsky 1961)

Reachability is undecidable in $\mathbb{N}_z + \mathbb{N}_z$.

Encoding

$$(n_1,n_2)\mapsto 2^{n_1}\cdot 3^{n_2}$$

Operation in $\mathbb{N}_z {+} \mathbb{N}_z$	On encoding	
increment n_1	multiply by 2	
decrement n_1	divide by 2	

Theorem (Minsky 1961)

Reachability is undecidable in $\mathbb{N}_z + \mathbb{N}_z$.

$$(n_1,n_2)\mapsto 2^{n_1}\cdot 3^{n_2}$$

Operation in $\mathbb{N}_z {+} \mathbb{N}_z$	On encoding	
increment n_1	multiply by 2	
decrement n_1	divide by 2	
zero test n ₁	verify $n_1 \not\equiv 0 \mod 2$	

Theorem (Minsky 1961)

Reachability is undecidable in $\mathbb{N}_z + \mathbb{N}_z$.

$$(n_1,n_2)\mapsto 2^{n_1}\cdot 3^{n_2}$$

Operation in $\mathbb{N}_z {+} \mathbb{N}_z$	On encoding	
increment n_1	multiply by 2	
decrement n_1	divide by 2	
zero test n_1	verify $n_1 \not\equiv 0 \mod 2$	
increment n_2	multiply by 3	

Theorem (Minsky 1961)

Reachability is undecidable in $\mathbb{N}_z + \mathbb{N}_z$.

$$(n_1,n_2)\mapsto 2^{n_1}\cdot 3^{n_2}$$

Operation in $\mathbb{N}_z {+} \mathbb{N}_z$	On encoding	
increment n_1	multiply by 2	
decrement n_1	divide by 2	
zero test n_1	verify $n_1 \not\equiv 0 \mod 2$	
increment n_2	multiply by 3	
decrement no	divide by 3	

Theorem (Minsky 1961)

Reachability is undecidable in $\mathbb{N}_z + \mathbb{N}_z$.

$$(n_1, n_2) \mapsto 2^{n_1} \cdot 3^{n_2}$$

Operation in $\mathbb{N}_z {+} \mathbb{N}_z$	On encoding	
increment n_1	multiply by 2	
decrement n_1	divide by 2	
zero test n_1	verify $n_1 \not\equiv 0 \mod 2$	
increment n_2	multiply by 3	
decrement n_2	divide by 3	
zero test n_2	verify $n_2 \not\equiv 0 \mod 3$	

Theorem (Minsky 1961)

Reachability is undecidable in $\mathbb{N}_z + \mathbb{N}_z$.

Encoding

$$(n_1,n_2)\mapsto 2^{n_1}\cdot 3^{n_2}$$

Operation in $\mathbb{N}_z {+} \mathbb{N}_z$	On encoding
increment n_1	multiply by 2
decrement n_1	divide by 2
zero test n_1	verify $n_1 \not\equiv 0 \mod 2$
increment n_2	multiply by 3
decrement n_2	divide by 3
zero test n ₂	verify $n_2 \not\equiv 0 \mod 3$

Initial value $2^0 \cdot 3^0 = 1$ Final value $2^0 \cdot 3^0 = 1$

Theorem (Minsky 1961)

Reachability is undecidable in $\mathbb{N}_z + \mathbb{N}_z$.

Encoding

$$(n_1,n_2)\mapsto 2^{n_1}\cdot 3^{n_2}$$

Operation in $\mathbb{N}_z + \mathbb{N}_z$	On encoding	Symbol
increment n_1	multiply by 2	m_2
decrement n_1	divide by 2	d_2
zero test n_1	verify $n_1 \not\equiv 0 \mod 2$	t_2
increment n ₂	multiply by 3	m_3
decrement n_2	divide by 3	d_3
zero test n ₂	verify $n_2 \not\equiv 0 \mod 3$	t_3

Initial value $2^0 \cdot 3^0 = 1$ Final value $2^0 \cdot 3^0 = 1$ $\Delta = \{m_2, d_2, t_2, m_3, d_3, t_3\}$

$$\Delta = \{m_2, d_2, t_2, m_3, d_3, t_3\}$$

$$R_{m_f} = \{ (n, f \cdot n) \mid n \in \mathbb{N} \}$$

$$R_{d_f} = \{ (f \cdot n, n) \mid n \in \mathbb{N} \}$$

$$R_{t_f} = \{ (n, n) \mid n \in \mathbb{N}, n \not\equiv 0 \mod f \}$$

$$\Delta = \{m_2, d_2, t_2, m_3, d_3, t_3\}$$

$$R_{m_f} = \{ (n, f \cdot n) \mid n \in \mathbb{N} \}$$

$$R_{d_f} = \{ (f \cdot n, n) \mid n \in \mathbb{N} \}$$

$$R_{t_f} = \{ (n, n) \mid n \in \mathbb{N}, n \not\equiv 0 \mod f \}$$

Reformulation

Given Regular language $M \subseteq \Delta^*$

Question Is there a word

$$x_1 \cdots x_\ell \in M$$
 with $(1,1) \in R_{x_1} R_{x_2} \cdots R_{x_\ell}$?

 $\Delta = \{m_2, d_2, t_2, m_3, d_3, t_3\} \quad RS = \{(m, n) \mid \exists k \colon (m, k) \in R, \ (k, n) \in S\}$

Relations

$$R_{m_f} = \{(n, f \cdot n) \mid n \in \mathbb{N}\}$$

$$R_{d_f} = \{(f \cdot n, n) \mid n \in \mathbb{N}\}$$

$$R_{t_f} = \{(n, n) \mid n \in \mathbb{N}, n \not\equiv 0 \bmod f\}$$

Reformulation

Given Regular language $M \subseteq \Delta^*$

Question Is there a word

$$x_1 \cdots x_\ell \in M$$
 with $(1,1) \in R_{x_1} R_{x_2} \cdots R_{x_\ell}$?

$$\Delta = \{m_2, d_2, t_2, m_3, d_3, t_3\} \quad RS = \{(m, n) \mid \exists k \colon (m, k) \in R, \ (k, n) \in S\}$$

$$R_{m_f} = \{ (n, f \cdot n) \mid n \in \mathbb{N} \}$$

$$R_{d_f} = \{ (f \cdot n, n) \mid n \in \mathbb{N} \}$$

$$R_{t_f} = \{ (n, n) \mid n \in \mathbb{N}, n \not\equiv 0 \bmod f \}$$

Reformulation

Given Regular language $M \subseteq \Delta^*$ Question Is there a word $x_1 \cdots x_\ell \in M \text{ with}$ $(1,1) \in R_{x_1} R_{x_2} \cdots R_{x_\ell}?$

Problem

Implementing R_{m_f} , R_{d_f} , R_{t_f} directly likely impossible!

 $\Delta = \{m_2, d_2, t_2, m_3, d_3, t_3\} \quad RS = \{(m, n) \mid \exists k \colon (m, k) \in R, \ (k, n) \in S\}$

Relations

$$R_{m_f} = \{(n, f \cdot n) \mid n \in \mathbb{N}\}$$

$$R_{d_f} = \{(f \cdot n, n) \mid n \in \mathbb{N}\}$$

$$R_{t_f} = \{(n, n) \mid n \in \mathbb{N}, n \not\equiv 0 \bmod f\}$$

Reformulation

Given Regular language $M \subseteq \Delta^*$

Question Is there a word

$$x_1 \cdots x_\ell \in M$$
 with $(1,1) \in R_{x_1} R_{x_2} \cdots R_{x_\ell}$?

$$\Delta = \{m_2, d_2, t_2, m_3, d_3, t_3\} \quad RS = \{(m, n) \mid \exists k \colon (m, k) \in R, \ (k, n) \in S\}$$

$$R_{m_f} = \{ (n, f \cdot n) \mid n \in \mathbb{N} \}$$

$$R_{d_f} = \{ (f \cdot n, n) \mid n \in \mathbb{N} \}$$

$$R_{t_f} = \{ (n, n) \mid n \in \mathbb{N}, n \not\equiv 0 \bmod f \}$$

Reformulation

Given Regular language $M \subseteq \Delta^*$ Question Is there a word

$$x_1 \cdots x_\ell \in M$$
 with $(1,1) \in R_{x_1} R_{x_2} \cdots R_{x_\ell}$?

$$\Delta = \{m_2, d_2, t_2, m_3, d_3, t_3\} \quad RS = \{(m, n) \mid \exists k \colon (m, k) \in R, \ (k, n) \in S\}$$

$$R_{m_f} = \{ (n, f \cdot n) \mid n \in \mathbb{N} \}$$

$$R_{d_f} = \{ (f \cdot n, n) \mid n \in \mathbb{N} \}$$

$$R_{t_f} = \{ (n, n) \mid n \in \mathbb{N}, n \not\equiv 0 \bmod f \}$$

Reformulation

Given Regular language $M \subseteq \Delta^*$ Question Is there a word $x_1 \cdots x_\ell \in M$ with $(1,1) \in R_{x_1}R_{x_2}\cdots R_{x_\ell}$?

$$(q_1, \#a^m, 0) \xrightarrow{*} (q_3, \#a^n, 0)$$

iff $n < f \cdot m$

$$\Delta = \{m_2, d_2, t_2, m_3, d_3, t_3\} \quad RS = \{(m, n) \mid \exists k : (m, k) \in R, (k, n) \in S\}$$

$$R_{m_f} = \{(n, f \cdot n) \mid n \in \mathbb{N}\}$$

$$R_{d_f} = \{(f \cdot n, n) \mid n \in \mathbb{N}\}$$

$$R_{t_f} = \{(n, n) \mid n \in \mathbb{N}, n \not\equiv 0 \bmod f\}$$

Reformulation Given Regular language
$$M\subseteq \Delta^*$$
 Question Is there a word

$$x_1 \cdots x_\ell \in M$$
 with $(1,1) \in R_{x_1} R_{x_2} \cdots R_{x_\ell}$?

$$(q_1, \#a^m, 0) \xrightarrow{*} (q_3, \#a^n, 0)$$

iff $n \le f \cdot m$

Idea

Compute weakly, but twice: forward and backward.

$$\Delta = \{m_2, d_2, t_2, m_3, d_3, t_3\} \quad RS = \{(m, n) \mid \exists k : (m, k) \in R, (k, n) \in S\}$$

$$R_{m_f} = \{(n, f \cdot n) \mid n \in \mathbb{N}\}$$

$$R_{d_f} = \{(f \cdot n, n) \mid n \in \mathbb{N}\}$$

$$R_{t_f} = \{(n, n) \mid n \in \mathbb{N}, n \not\equiv 0 \bmod f\}$$

Reformulation

Given Regular language $M \subseteq \Delta^*$ Question Is there a word $x_1 \cdots x_\ell \in M$ with $(1,1) \in R_{x_1} R_{x_2} \cdots R_{x_\ell}$?

$$(q_1,\#a^m,0) \xrightarrow{*} (q_3,\#a^n,0)$$
 iff $n \leq f \cdot m$

Idea

Compute weakly, but twice: forward and backward.

$$\overrightarrow{R} = \{(m,n) \mid \exists \widetilde{n} \geq n \colon (m,\widetilde{n}) \in R\}$$

$$\Delta = \{m_2, d_2, t_2, m_3, d_3, t_3\} \quad RS = \{(m, n) \mid \exists k : (m, k) \in R, (k, n) \in S\}$$

$$R_{m_f} = \{(n, f \cdot n) \mid n \in \mathbb{N}\}$$

$$R_{d_f} = \{(f \cdot n, n) \mid n \in \mathbb{N}\}$$

$$R_{t_f} = \{(n, n) \mid n \in \mathbb{N}, n \not\equiv 0 \bmod f\}$$

Reformulation

Given Regular language $M \subseteq \Delta^*$ Question Is there a word $x_1 \cdots x_\ell \in M$ with

 $(1,1) \in R_{x_1}R_{x_2}\cdots R_{x_\ell}$?

$$(q_1,\#a^m,0)\stackrel{*}{
ightarrow}(q_3,\#a^n,0)$$

iff $n\leq f\cdot m$

Idea

Compute weakly, but twice: forward and backward.

$$\overrightarrow{R} = \{(m, n) \mid \exists \tilde{n} \geq n \colon (m, \tilde{n}) \in R\}$$

$$\overleftarrow{R} = \{(m, n) \mid \exists \tilde{m} \geq m \colon (\tilde{m}, n) \in R\}$$

$$\Delta = \{m_2, d_2, t_2, m_3, d_3, t_3\} \quad RS = \{(m, n) \mid \exists k : (m, k) \in R, (k, n) \in S\}$$

$$R_{m_f} = \{ (n, f \cdot n) \mid n \in \mathbb{N} \}$$

$$R_{d_f} = \{ (f \cdot n, n) \mid n \in \mathbb{N} \}$$

$$R_{t_f} = \{ (n, n) \mid n \in \mathbb{N}, n \not\equiv 0 \bmod f \}$$

Reformulation

Given Regular language $M\subseteq \Delta^*$

Question Is there a word

$$x_1 \cdots x_\ell \in M$$
 with $(1,1) \in R_{x_1} R_{x_2} \cdots R_{x_\ell}$?

$$(q_1,\#a^m,0) \xrightarrow{*} (q_3,\#a^n,0)$$
 iff $n \leq f \cdot m$

Idea

Compute weakly, but twice: forward and backward.

$$\overrightarrow{R} = \{(m, n) \mid \exists \tilde{n} \ge n \colon (m, \tilde{n}) \in R\}$$

$$\overleftarrow{R} = \{(m, n) \mid \exists \tilde{m} \ge m \colon (\tilde{m}, n) \in R\}$$

Proposition

$$\Delta = \{m_2, d_2, t_2, m_3, d_3, t_3\} \quad RS = \{(m, n) \mid \exists k : (m, k) \in R, (k, n) \in S\}$$

$$R_{m_f} = \{ (n, f \cdot n) \mid n \in \mathbb{N} \}$$

$$R_{d_f} = \{ (f \cdot n, n) \mid n \in \mathbb{N} \}$$

$$R_{t_f} = \{ (n, n) \mid n \in \mathbb{N}, n \not\equiv 0 \bmod f \}$$

Reformulation

Given Regular language $M \subseteq \Delta^*$ Question Is there a word $x_1 \cdots x_\ell \in M$ with $(1,1) \in R_{x_1}R_{x_2} \cdots R_{x_\ell}$?

$$(q_1,\#a^m,0)\stackrel{*}{
ightarrow}(q_3,\#a^n,0)$$

iff $n\leq f\cdot m$

Idea

Compute weakly, but twice: forward and backward.

$$\overrightarrow{R} = \{(m, n) \mid \exists \tilde{n} \geq n \colon (m, \tilde{n}) \in R\}$$

$$\overleftarrow{R} = \{(m, n) \mid \exists \tilde{m} \geq m \colon (\tilde{m}, n) \in R\}$$

Proposition

strictly
$$m R n$$
 monotone: $m' R n'$

$$\Delta = \{m_2, d_2, t_2, m_3, d_3, t_3\} \quad RS = \{(m, n) \mid \exists k : (m, k) \in R, (k, n) \in S\}$$

$$R_{m_f} = \{(n, f \cdot n) \mid n \in \mathbb{N}\}$$

$$R_{d_f} = \{(f \cdot n, n) \mid n \in \mathbb{N}\}$$

$$R_{t_f} = \{(n, n) \mid n \in \mathbb{N}, n \not\equiv 0 \bmod f\}$$

Reformulation

Given Regular language $M \subseteq \Delta^*$ Question Is there a word $x_1 \cdots x_\ell \in M$ with $(1,1) \in R_{x_1}R_{x_2} \cdots R_{x_\ell}$?

$$(q_1,\#a^m,0)\stackrel{*}{
ightarrow}(q_3,\#a^n,0)$$

iff $n\leq f\cdot m$

Idea

Compute weakly, but twice: forward and backward.

$$\overrightarrow{R} = \{(m, n) \mid \exists \tilde{n} \geq n \colon (m, \tilde{n}) \in R\}$$

$$\overleftarrow{R} = \{(m, n) \mid \exists \tilde{m} \geq m \colon (\tilde{m}, n) \in R\}$$

Proposition

strictly
$$m$$
 R n V iff V m' R n'

$$\Delta = \{m_2, d_2, t_2, m_3, d_3, t_3\} \quad RS = \{(m, n) \mid \exists k : (m, k) \in R, (k, n) \in S\}$$

$$R_{m_f} = \{(n, f \cdot n) \mid n \in \mathbb{N}\}$$

$$R_{d_f} = \{(f \cdot n, n) \mid n \in \mathbb{N}\}$$

$$R_{t_f} = \{(n, n) \mid n \in \mathbb{N}, n \not\equiv 0 \bmod f\}$$

Reformulation

Given Regular language $M \subseteq \Delta^*$ Question Is there a word $x_1 \cdots x_\ell \in M$ with $(1,1) \in R_{x_1}R_{x_2} \cdots R_{x_\ell}$?

$$(q_1,\#a^m,0) \xrightarrow{*} (q_3,\#a^n,0)$$
 iff $n \leq f \cdot m$

Idea

Compute weakly, but twice: forward and backward.

$$\overrightarrow{R} = \{(m, n) \mid \exists \tilde{n} \geq n \colon (m, \tilde{n}) \in R\}$$

$$\overleftarrow{R} = \{(m, n) \mid \exists \tilde{m} \geq m \colon (\tilde{m}, n) \in R\}$$

Proposition

strictly monotone:
$$m R n$$
 \vee iff \vee $m' R n'$

$$\Delta = \{m_2, d_2, t_2, m_3, d_3, t_3\} \quad RS = \{(m, n) \mid \exists k \colon (m, k) \in R, \ (k, n) \in S\}$$

$$R_{m_f} = \{(n, f \cdot n) \mid n \in \mathbb{N}\}$$

$$R_{d_f} = \{(f \cdot n, n) \mid n \in \mathbb{N}\}$$

$$R_{t_f} = \{(n, n) \mid n \in \mathbb{N}, n \not\equiv 0 \bmod f\}$$

Reformulation

Given Regular language $M \subseteq \Delta^*$ Question Is there a word $x_1 \cdots x_\ell \in M$ with $(1,1) \in R_{x_1}R_{x_2} \cdots R_{x_\ell}$?

$$(q_1, \#a^m, 0) \xrightarrow{*} (q_3, m_f \#a^n, 0)$$
iff $n \le f \cdot m$

Idea

Compute weakly, but twice: forward and backward.

$$\overrightarrow{R} = \{(m, n) \mid \exists \tilde{n} \geq n \colon (m, \tilde{n}) \in R\}$$

$$\overleftarrow{R} = \{(m, n) \mid \exists \tilde{m} \geq m \colon (\tilde{m}, n) \in R\}$$

Proposition

strictly monotone:
$$m R n$$
 \vee iff \vee $m' R n'$

• start computation with $\#a = \#a^{2^0 \cdot 3^0}$

- start computation with $\#a = \#a^{2^0 \cdot 3^0}$
- simulate 2CM:
 - ▶ for each $\delta \in \Delta$: apply it weakly and record δ on the stack

- start computation with $\#a = \#a^{2^0.3^0}$
- simulate 2CM:
 - ▶ for each $\delta \in \Delta$: apply it weakly and record δ on the stack
- check that stack content is w#a with $w\in\Delta^*$

- start computation with $\#a = \#a^{2^0.3^0}$
- simulate 2CM:
 - ▶ for each $\delta \in \Delta$: apply it weakly and record δ on the stack
- check that stack content is w#a with $w\in\Delta^*$
- replay instructions backwards:
 - apply each instruction from w weakly backwards

- start computation with $\#a = \#a^{2^0.3^0}$
- simulate 2CM:
 - ▶ for each $\delta \in \Delta$: apply it weakly and record δ on the stack
- check that stack content is w#a with $w\in\Delta^*$
- replay instructions backwards:
 - apply each instruction from w weakly backwards
- check: stack content is #a

- start computation with $\#a = \#a^{2^0.3^0}$
- simulate 2CM:
 - ▶ for each $\delta \in \Delta$: apply it weakly and record δ on the stack
- check that stack content is w#a with $w\in\Delta^*$
- replay instructions backwards:
 - apply each instruction from w weakly backwards
- check: stack content is #a

final state reachable iff
$$\exists x_1 \cdots x_\ell \in M$$
:
$$(1,1) \in \overrightarrow{R_{x_1}} \cdots \overrightarrow{R_{x_\ell}} \cap \overleftarrow{R_{x_1}} \cdots \overleftarrow{R_{x_\ell}}$$

- start computation with $\#a = \#a^{2^0.3^0}$
- simulate 2CM:
 - Delta for each $\delta \in \Delta$: apply it weakly and record δ on the stack
- check that stack content is w#a with $w\in\Delta^*$
- replay instructions backwards:
 - apply each instruction from w weakly backwards
- check: stack content is #a

final state reachable iff
$$\exists x_1 \cdots x_\ell \in M$$
:
$$(1,1) \in \overrightarrow{R_{x_1}} \cdots \overrightarrow{R_{x_\ell}} \cap \overleftarrow{R_{x_1}} \cdots \overleftarrow{R_{x_\ell}}$$

Proposition

- start computation with $\#a = \#a^{2^0.3^0}$
- simulate 2CM:
 - ▶ for each $\delta \in \Delta$: apply it weakly and record δ on the stack
- check that stack content is w#a with $w\in\Delta^*$
- replay instructions backwards:
 - apply each instruction from w weakly backwards
- check: stack content is #a

$$\begin{array}{ll} \text{final state reachable} & \text{iff} & \exists x_1 \cdots x_\ell \in M : \\ & (1,1) \in \overrightarrow{R_{x_1}} \cdots \overrightarrow{R_{x_\ell}} \cap \overleftarrow{R_{x_1}} \cdots \overleftarrow{R_{x_\ell}} \\ & \text{iff} & \exists x_1 \cdots x_\ell \in M : \\ & (1,1) \in R_{x_1} \cdots R_{x_\ell} \end{array}$$

Proposition

For strictly monotone
$$R_1, \ldots, R_n$$
: $R_1 \cdots R_n = \overrightarrow{R_1} \cdots \overrightarrow{R_n} \cap \overleftarrow{R_1} \cdots \overleftarrow{R_n}$.

For strictly monotone
$$R_1, \ldots, R_n$$
: $R_1 \cdots R_n = \overrightarrow{R_1} \cdots \overrightarrow{R_n} \cap \overleftarrow{R_1} \cdots \overleftarrow{R_n}$.

$$y_0 \quad \overleftarrow{R_1} \quad y_1 \quad \overleftarrow{R_2} \quad y_2 \quad \overleftarrow{R_3} \quad \cdots \quad \overleftarrow{R_n} \quad y_n$$

For strictly monotone
$$R_1, \ldots, R_n$$
: $R_1 \cdots R_n = \overrightarrow{R_1} \cdots \overrightarrow{R_n} \cap \overleftarrow{R_1} \cdots \overleftarrow{R_n}$.

 $x_0 \quad R_1 \quad x_1 \quad R_2 \quad x_2$
 \vee

$$x_2' \quad \overrightarrow{R_3} \quad \cdots \quad \overrightarrow{R_n} \quad x_n$$

$$y_0 \quad \overleftarrow{R_1} \quad y_1 \quad \overleftarrow{R_2} \quad y_2 \quad \overleftarrow{R_3} \quad \cdots \quad \overleftarrow{R_n} \quad y_n$$

For strictly monotone
$$R_1, \ldots, R_n$$
: $R_1 \cdots R_n = \overrightarrow{R_1} \cdots \overrightarrow{R_n} \cap \overleftarrow{R_1} \cdots \overleftarrow{R_n}$.

 $x_0 \quad R_1 \quad x_1 \quad R_2 \quad x_2$

 x_2' $\overrightarrow{R_3}$ \cdots $\overrightarrow{R_n}$ x_n

 $\overleftarrow{R_1} \quad y_1 \quad \overleftarrow{R_2} \quad y_2 \quad \overleftarrow{R_3} \quad \cdots \quad \overleftarrow{R_n} \quad y_n$

Theorem

Coverability in $PD + \mathbb{N}_r$ is undecidable.

Theorem

Coverability in $PD + \mathbb{N}_r$ is undecidable.

• settles last case of coverability in extensions of 2-VASS

Theorem

Coverability in $PD + \mathbb{N}_r$ is undecidable.

- settles last case of coverability in extensions of 2-VASS
- undecidability that really exploits pushdown

Theorem

Coverability in $PD + \mathbb{N}_r$ is undecidable.

- settles last case of coverability in extensions of 2-VASS
- undecidability that really exploits pushdown

Fun fact

There exists a language K so that:

- ullet intersection with K is decidable for one-counter languages, but
- ullet intersection with K is undecidable for context-free languages.

Theorem

Coverability in PD + \mathbb{N}_r is undecidable.

- settles last case of coverability in extensions of 2-VASS
- undecidability that really exploits pushdown

Fun fact

There exists a language K so that:

- ullet intersection with K is decidable for one-counter languages, but
- ullet intersection with K is undecidable for context-free languages.

Open problems

Theorem

Coverability in PD + \mathbb{N}_r is undecidable.

- settles last case of coverability in extensions of 2-VASS
- undecidability that really exploits pushdown

Fun fact

There exists a language K so that:

- ullet intersection with K is decidable for one-counter languages, but
- ullet intersection with K is undecidable for context-free languages.

Open problems

• Is reachability decidable in PD + \mathbb{N} ?

Theorem

Coverability in PD + \mathbb{N}_r is undecidable.

- settles last case of coverability in extensions of 2-VASS
- undecidability that really exploits pushdown

Fun fact

There exists a language K so that:

- ullet intersection with K is decidable for one-counter languages, but
- ullet intersection with K is undecidable for context-free languages.

Open problems

- Is reachability decidable in PD + \mathbb{N} ?
- Complexity of cov. and reach. for $\mathbb{N}_z + \mathbb{N}_r$, $\mathbb{N}_t + \mathbb{N}_t$, PD + \mathbb{N} ?

Theorem

Coverability in PD + \mathbb{N}_r is undecidable.

- settles last case of coverability in extensions of 2-VASS
- undecidability that really exploits pushdown

Fun fact

There exists a language K so that:

- ullet intersection with K is decidable for one-counter languages, but
- ullet intersection with K is undecidable for context-free languages.

Open problems

- Is reachability decidable in PD + \mathbb{N} ?
- Complexity of cov. and reach. for $\mathbb{N}_z + \mathbb{N}_r$, $\mathbb{N}_t + \mathbb{N}_t$, PD + \mathbb{N} ? ($\mathbb{N} + \mathbb{N}$: PSPACE for binary encoding (Blondin et. al. 2015), NL for unary encoding (Englert et. al. 2016))