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Affine Loops
We study programs of the form

P : while (Cx > d) do x :== Ax + b J

where A, C, b, d are matrices of appropriate dimensions.
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P : while (Cx > d) dox := Ax+b J

where A, C, b, d are matrices of appropriate dimensions. P is
called Linear or homogeneous whenever b =0 and d = 0.

® P is Terminating over S C RY whenever P terminates over all
x€S.

e P is Non-Terminating (NT) over S C RY whenever there exist
x € S such that P doesn't terminate over S.

Interesting sets of initial values (1V):
® S = {x} (Halting Problem)
e S =R (Universal Termination over R)
* S = Q9 (Universal Termination over Q)
v S =749 (Universal Termination over Z) (Our Focus)
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Termination over Integers
Example

while ((4 1) (2) > 0) do {(2) = <42 g) <2>}
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p2 = NEXT(p2) = pZ +( - b), ++runs;
if (sense)

while (b < --p) {
const gptr c = *b;

*bet = *p;
*p =c;
p = savep;
1
while (g < p) { /* simple pairs */

p2 = NEXT(p2) = p2 + 2; ++runs;
const gptr c = *q++;

*(q-1) = *q;

*qr+ = ¢;
q+=2;

}

if (((b = p) == t) & ((t+1) == last)) {ll
NEXT(p2) = p2 + 1; ++runs;
b++;
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do {

e Simplest type of
program for which
termination problems
are open.

® They are everywhere.
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do {

p=r=>b+(2* PTHRESH);

if(r>=t)p=r=t; /* too short to care about */
else {

while (((cmp(aTHX_ *(p-1), *p) > @) == sense) &&
. W =2)>d) {}
e Simplest type of e €
. /* b through r is a (long) run.
program for WhICh ;*:;t:nf‘it as far as possible. */

while (((p += 2) < t) &
((cmp(aTHX_ *(p-1), *p) > @) == sense)) q = p;
-p=q+2; /* no simple pairs, no after-run */

termination problems
are open.

° They ag ' g

H
p singleton, if possible */
t) &

/* run of greater than 2 at b */

Consider g .
*(p-1), *p) > 0) ==
code from a S ) @ = sensed

. i XT(PZ) = P2+ (p - b); ++runs;
. A se)
driver: y 22 o < -0 ¢
§' const gptr c = *b;
® Terminator o

ep;

/* simple pairs */
) = p2 + 2; ++runs;

while (Cx >
dox:=A
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Affine Loops & Linear Recurrence Sequences
A Linear Recurrence Sequence (LRS) u = (u,)72, is a sequence
defined by a recursion of the form

Upyk = a1Upyk—1 + -+ aklp + ak41

for fixed initial values vy, ..., uk.
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A Linear Recurrence Sequence (LRS) u = (u,)72, is a sequence
defined by a recursion of the form

Upyk = a1Upyk—1 + -+ aklp + ak41

for fixed initial values vy, ..., uk.
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fn:n—1+fn—27 f1:f2:1

itll 1
N w
[ L1} 2
| AN

m' m 3

SN \ SN
L) L ) 5

Leonardo of Pisa \ !(% L!(% | !ﬂ\b

oMY W Y Y W WY

6/14



Affine Loops & Linear Recurrence Sequences

For a loop

P : while (cx > d) do x := Ax+ b J

it can be readily seen that

e a3 )

is a LRS,

7/14



Affine Loops & Linear Recurrence Sequences

For a loop

P : while (cx > d) do x := Ax+ b J

it can be readily seen that

e a3 )

is a LRS, and P is non-terminating over x iff u, > 0 for all n > 0.

7/14



Affine Loops & Linear Recurrence Sequences

For a loop

P : while (cx > d) do x := Ax+ b J

it can be readily seen that

e a3 )

is a LRS, and P is non-terminating over x iff u, > 0 for all n > 0.

For a fixed initial value x = xq, deciding positivity of u = (up),
known as Positivity problem is widely believed to be a hard

problem

7/14



Affine Loops & Linear Recurrence Sequences

For a loop

P : while (cx > d) do x := Ax+ b J

it can be readily seen that

e a3 )

is a LRS, and P is non-terminating over x iff u, > 0 for all n > 0.

For a fixed initial value x = xq, deciding positivity of u = (up),
known as Positivity problem is widely believed to be a hard
problem as it will entail major breakthroughs in Number Theory.
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Termination of Affine programs over R is decidable.

Conjecture: Termination over (3 and Z (Tiwari)

Termination of Affine programs over QQ and 7Z is decidable.

Theorem: Termination over Q) (Braverman, 2006)

Termination of Affine programs over @3 is decidable.

Corollary: Termination over ) (Braverman)

Termination of Affine programs over Z is decidable when P is ho-
mogeneous.

Theorem: Termination over Z (Ouaknine, Pinto, Worrell, 2015)

Termination of Affine programs over Z is decidable when the update
matrix A is diagonalisable.
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be hard to decide!
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Termination over Z

Braverman conjectured to be linked to Positivity, and, therefore, to
be hard to decide! But we came up with a solution to bypass hard
initial values!

Termination of Affine programs over Z is decidable.

Key Tools (simplified).

® Masser: Given complex numbers 7, ...,7s of modulus 1, the
group {(n1,...,ns) € Z° : y{* -+ -8 = 1} has a basis of
bounded size.

e Kachyian & Porkolab: It is decidable whether convex
semi-algebraic set C C RY contains an integer point.

e Khinchine: There exists W € N s.t. any convex set C C R4
of width at least W contains an integer point.

O]
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Other methods: Ranking Functions

For a loop

P : while (Bx > b) do x .= Ax + a J

a Ranking Function is a function

p: 79 =7
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Other methods: Ranking Functions

Example

while (x >0 Ay >0 A z>0) do
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oXxX—— y++,z——
oeX——, y——, z++

12/14



Other methods: Ranking Functions

Example
while (x >0 Ay >0 A z>0) do
°X++7y——7z——
'X——7Y++7Z——
.x__7.y__7z++
Solution.

p(x,y,z) = x +y + z is a ranking function for this loop:

12/14



Other methods: Ranking Functions

Example
while (x >0 Ay >0 A z>0) do
.x++)y__7z__
'X——7Y++7Z——
.x__7.y__7z++
Solution.

p(x,y,z) = x +y + z is a ranking function for this loop:
v p(x,y,z) >0, Vp(x,y,z) > (0,0,0),

12/14



Other methods: Ranking Functions

Example
while (x >0 Ay >0 A z>0) do
.x++)y__7z__
'X——7Y++7Z——
.x__7.y__7z++
Solution.

p(x,y,z) = x +y + z is a ranking function for this loop:
v p(x,y,z) >0, Vp(x,y,z) > (0,0,0),
/ p(xy.2) > p(xy 7).

12/14



Ranking Functions: They don't always exist

Example

x1 x1
while (1 0 1)(xz) >1) do {(XQ) :(
X3 X3
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Ranking Functions: They don't always exist

Example
X1 X1 1 1 0\/x1 0
while [(101) x2 |>—1] do {|x |:={0 1 1]{x |- O
X3 X3 0 0 1/\x3 -1
Solution.

This loop has doesn’t have a linear ranking function. O
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