Termination of Affine Loops over the Integers

Mehran Hosseinil, Joél QOuaknine!’2, James Worrell!

RP
12 September, 2019

1Oxford University

2Max Planck Institute for Software Systems
1/14

Affine Loops
We study programs of the form

P : while (Cx > d) do x :== Ax + b J

where A, C, b, d are matrices of appropriate dimensions.

2/14

Affine Loops
We study programs of the form

P : while (Cx > d) dox := Ax+b J

where A, C, b, d are matrices of appropriate dimensions. P is
called Linear or homogeneous whenever b =0 and d = 0.

2/14

Affine Loops
We study programs of the form

P : while (Cx > d) dox := Ax+b J

where A, C, b, d are matrices of appropriate dimensions. P is
called Linear or homogeneous whenever b =0 and d = 0.

® P is Terminating over S C RY whenever P terminates over all
x€S.

2/14

Affine Loops
We study programs of the form

P : while (Cx > d) dox := Ax+b J

where A, C, b, d are matrices of appropriate dimensions. P is
called Linear or homogeneous whenever b =0 and d = 0.

® P is Terminating over S C RY whenever P terminates over all
x€S.

e P is Non-Terminating (NT) over S C RY whenever there exist
X € S such that P doesn’t terminate over S.

2/14

Affine Loops
We study programs of the form

P : while (Cx > d) dox := Ax+b J

where A, C, b, d are matrices of appropriate dimensions. P is
called Linear or homogeneous whenever b =0 and d = 0.

® P is Terminating over S C RY whenever P terminates over all
x€S.

e P is Non-Terminating (NT) over S C RY whenever there exist
x € S such that P doesn't terminate over S.

Interesting sets of initial values (1V):

2/14

Affine Loops
We study programs of the form

P : while (Cx > d) dox := Ax+b J

where A, C, b, d are matrices of appropriate dimensions. P is
called Linear or homogeneous whenever b =0 and d = 0.

® P is Terminating over S C RY whenever P terminates over all
x€S.

e P is Non-Terminating (NT) over S C RY whenever there exist
x € S such that P doesn't terminate over S.

Interesting sets of initial values (1V):
® S = {x} (Halting Problem)

2/14

Affine Loops
We study programs of the form

P : while (Cx > d) dox := Ax+b J

where A, C, b, d are matrices of appropriate dimensions. P is
called Linear or homogeneous whenever b =0 and d = 0.

® P is Terminating over S C RY whenever P terminates over all
x€S.

e P is Non-Terminating (NT) over S C RY whenever there exist
x € S such that P doesn't terminate over S.

Interesting sets of initial values (1V):
® S = {x} (Halting Problem)

e S =R (Universal Termination over R)

2/14

Affine Loops
We study programs of the form

P : while (Cx > d) dox := Ax+b J

where A, C, b, d are matrices of appropriate dimensions. P is
called Linear or homogeneous whenever b =0 and d = 0.

® P is Terminating over S C RY whenever P terminates over all
x€S.

e P is Non-Terminating (NT) over S C RY whenever there exist
x € S such that P doesn't terminate over S.

Interesting sets of initial values (1V):
® S = {x} (Halting Problem)
e S =R (Universal Termination over R)

* S = Q9 (Universal Termination over Q)

2/14

Affine Loops
We study programs of the form

P : while (Cx > d) dox := Ax+b J

where A, C, b, d are matrices of appropriate dimensions. P is
called Linear or homogeneous whenever b =0 and d = 0.

® P is Terminating over S C RY whenever P terminates over all
x€S.

e P is Non-Terminating (NT) over S C RY whenever there exist
x € S such that P doesn’t terminate over S.

Interesting sets of initial values (1V):
® S = {x} (Halting Problem)
e S =R (Universal Termination over R)
* S = Q9 (Universal Termination over Q)

e S =79 (Universal Termination over 7Z)

2/14

Affine Loops
We study programs of the form

P : while (Cx > d) dox := Ax+b J

where A, C, b, d are matrices of appropriate dimensions. P is
called Linear or homogeneous whenever b =0 and d = 0.

® P is Terminating over S C RY whenever P terminates over all
x€S.

e P is Non-Terminating (NT) over S C RY whenever there exist
x € S such that P doesn't terminate over S.

Interesting sets of initial values (1V):
® S = {x} (Halting Problem)
e S =R (Universal Termination over R)
* S = Q9 (Universal Termination over Q)
v S =749 (Universal Termination over Z) (Our Focus)

2/14

Termination over Integers
Example

while ((4 1) (2) > 0) do {(2) = <42 g) <2>}

3/14

Termination over Integers
Example

- (60 (2)>0) o {(2) = (2 8) ()

This loop has eigenvalues e = —1 — /17,2 = —1 + /17 with
eigenvectors vi = (—1 —/17,4), vo = (=1 + V17,4). Note that

3/14

Termination over Integers
Example

while ((4 1) (2) > 0> do {(2) = <42 g) <2>}

Solution.
This loop has eigenvalues e = —1 — /17,2 = —1 + /17 with
eigenvectors vi = (—1 — V/17,4), vo = (=1 4+ V/17,4). Note that

°* <0< e

3/14

Termination over Integers
Example

while ((4 1) (2) > 0> do {(2) = <42 g) <2>}

Solution.
This loop has eigenvalues e = —1 — /17,2 = —1 + /17 with
eigenvectors vi = (—1 — V/17,4), vo = (=1 4+ V/17,4). Note that

°* <0< e
° lef > [ef

3/14

Termination over Integers
Example

while ((4 1) (2) > 0> do {(2) = (42 g) <2>}

Solution.
This loop has eigenvalues e = —1 — /17,2 = —1 + /17 with
eigenvectors vi = (—1 — V/17,4), vo = (=1 4+ V/17,4). Note that

°* <0< e

° |le] > |ef
For every x € R?, there exist a1,a» € R s.t. x = ajvy + arvo.

3/14

Termination over Integers
Example

while ((4 1) (2) > 0> do {(2) = <42 g) <2>}

Solution.
This loop has eigenvalues ¢ = —1 — \ﬁ e = —1+ /17 with
eigenvectors v = (—1 —1/17,4), vo = (—1 4+ v/17,4). Note that
°® <0< e
° |er] > |e]
For every x € R?, there exist a1,a» € R s.t. x = ajvy + arvo.
X, = ajefvi + axeyvo

3/14

Termination over Integers
Example

while ((4 1) (2) > 0> do {(2) = <42 g) <2>}

Solution.
This loop has eigenvalues ¢ = —1 — \ﬁ e = —1+ /17 with
eigenvectors v = (—1 —1/17,4), vo = (—1 4+ v/17,4). Note that
°® <0< e
° |er] > |e]
For every x € R?, there exist a1,a» € R s.t. x = ajvy + arvo.
X, = ajefvi + axeyvo

only initial values which are multiple of v, are non-terminating.

3/14

Termination over Integers
Example

while ((4 1) (2) > 0> do {(2) = <42 g) <2>}

Solution.
This loop has eigenvalues e = —1 — /17,2 = —1 + /17 with
eigenvectors vi = (—1 — V/17,4), vo = (=1 4+ V/17,4). Note that

°* <0< e

° |le] > |ef
For every x € R?, there exist a1,a» € R s.t. x = ajvy + arvo.

X, = ajefvi + axeyvo

only initial values which are multiple of v, are non-terminating.
Therefore

3/14

Termination over Integers
Example

while ((4 1) (2) > 0> do {(2) = <42 g) <2>}

Solution.
This loop has eigenvalues e = —1 — /17,2 = —1 + /17 with
eigenvectors vi = (—1 — V/17,4), vo = (=1 4+ V/17,4). Note that

°® <0< e
° |ei] > |eo
For every x € R?, there exist a1,a» € R s.t. x = ajvy + arvo.
X, = ajefvi + axeyvo
only initial values which are multiple of v, are non-terminating.
Therefore
® Non-terminating over R.

3/14

Termination over Integers
Example

while ((4 1) (2) > 0> do {(2) = <42 g) <2>}

Solution.
This loop has eigenvalues ¢ = —1 — \ﬁ e = —1+ /17 with
eigenvectors v = (—1 —1/17,4), vo = (—1 4+ v/17,4). Note that

°® <0< e

o lesf > leo]
For every x € R?, there exist a1,a» € R s.t. x = ajvy + arvo.

X, = ajefvi + axeyvo

only initial values which are multiple of v, are non-terminating.
Therefore

® Non-terminating over R.

® Terminating over @Q and Z.
_3/14

Termination over Integers

Example

while (x > 0) do x := —5x + 2

4/14

Termination over Integers

Example

while (x > 0) do x := —5x + 2

Solution.
The update function f(x) = —5x + 2 is oscillating for all IV's
except for x = 1/3 which is its fixed point.

4/14

Termination over Integers

Example

while (x > 0) do x := —5x + 2

Solution.

The update function f(x) = —5x + 2 is oscillating for all IV's
except for x = 1/3 which is its fixed point. Therefore, the only IV
for which this loop is non-terminating is x = 1/3.

4/14

Termination over Integers

Example

while (x > 0) do x := —5x + 2

Solution.

The update function f(x) = —5x + 2 is oscillating for all IV's
except for x = 1/3 which is its fixed point. Therefore, the only IV
for which this loop is non-terminating is x = 1/3.

® Non-terminating over @ and R.

4/14

Termination over Integers

Example

while (x > 0) do x := —5x + 2

Solution.

The update function f(x) = —5x + 2 is oscillating for all IV's
except for x = 1/3 which is its fixed point. Therefore, the only IV
for which this loop is non-terminating is x = 1/3.

® Non-terminating over @ and R.

® Terminating over 7Z.

4/14

Termination over Integers

Example

while (x > 0) do x := —5x + 2

Solution.

The update function f(x) = —5x + 2 is oscillating for all IV's
except for x = 1/3 which is its fixed point. Therefore, the only IV
for which this loop is non-terminating is x = 1/3.

® Non-terminating over @ and R.

® Terminating over 7Z.

Terminating over R

4/14

Termination over Integers

Example

while (x > 0) do x := —5x + 2

Solution.

The update function f(x) = —5x + 2 is oscillating for all IV's
except for x = 1/3 which is its fixed point. Therefore, the only IV
for which this loop is non-terminating is x = 1/3.

® Non-terminating over @ and R.

® Terminating over 7Z.

Terminating over R = Terminating over Q)

4/14

Termination over Integers

Example

while (x > 0) do x := —5x + 2

Solution.
The update function f(x) = —5x + 2 is oscillating for all IV's
except for x = 1/3 which is its fixed point. Therefore, the only IV
for which this loop is non-terminating is x = 1/3.
® Non-terminating over @ and R.
® Terminating over 7Z.
O

Terminating over R = Terminating over {) = Terminating over Z

4/14

Importance of Affine While Loops

e Simplest type of
program for which
termination problems
are open.

5/14

Importance of Affine While Loops

e Simplest type of
program for which
termination problems
are open.

® They are everywhere.
Consider this part of
code from a device
driver:

5/14

Importance of Affine While Loops

e Simplest type of
program for which
termination problems
are open.

® They are everywhere.
Consider this part of
code from a device
driver:

do {
p=r=>b+(2* PTHRESH);
if(r>=t)p=r=t; /* too short to care about */
else {

while ((Cemp(aTHX_ *(p-1), *p) > @) == sense) &&
(D {3

(p-=2>a)
if (p<=a){
/* b through r is a (long) run.
** Extend it as far as possible. */
p=q=r;
while (((p += 2) < t) &&

(Cemp(aTHX_ *(p-1), *p) > @) = sense)) q = p;
r=p=q+2; /* no simple pairs, no after-run */

}

}
if (a>b) { /* run of greater than 2 at b */

gptr *savep = p;
p=q+=2;
/* pick up singleton, if possible */
if ((p=1t) &
((t + 1) == last) &
((cmp(aTHX *(p 1), *p) > @) == sense))

savep = r = p = q = last;
p2 = NEXT(p2) = pZ +(- b), ++runs;
if (sense)

while (b < --p) {
const gptr c = *b;

*bet = *p;
*p =c;
p = savep;
1
while (g < p) { /* simple pairs */

p2 = NEXT(p2) = p2 + 2; ++runs;
const gptr c = *q++;

*(q-1) = *q;

*qr+ = ¢;
q+=2;

}

if (((b = p) == t) & ((t+1) == last)) {ll
NEXT(p2) = p2 + 1; ++runs;
b++;

}

q=r;
1 while (h « +3-

5/14

Importance of Affine While Loops

e Simplest type of
program for which
termination problems
are open.

® They are everywhere.
Consider this part of
code from a device
driver:

do {
p=r=>b+(2* PTHRESH);
if(r>=t)p=r=t; /* too short to care about */
else {

while ((Cemp(aTHX_ *(p-1), *p) > @) == sense) &&
(D {3

(p-=2>a)
if (p<=a){
/* b through r is a (long) run.
** Extend it as far as possible. */
p=q=r;
while (((p += 2) < t) &&

(Cemp(aTHX_ *(p-1), *p) > @) = sense)) q = p;
r=p=q+2; /* no simple pairs, no after-run */

}

}
if (a>b) { /* run of greater than 2 at b */

gptr *savep = p;
p=q+=2;
/* pick up singleton, if possible */
if ((p=1t) &
((t + 1) == last) &
((cmp(aTHX *(p 1), *p) > @) == sense))

savep = r = p = q = last;
p2 = NEXT(p2) = pZ +(- b), ++runs;
if (sense)

while (b < --p) {
const gptr c = *b;

*bet = *p;
*=c;
p = savep;
}
while (q < p) { /* simple pairs */

p2 = NEXT(p2) = p2 + 2; ++runs;
const gptr c = *q++;

*(g-1) = *q;

*GH+ = ¢;
q+=2;

}

if (((b = p) == 1) & ((t+1) = last)) {
NEXT(p2) = p2 + 1; ++runs;
b++;

}

q=r;
1 while (h « +3-

5/14

Importance of Affine While Loops

do {

e Simplest type of
program for which
termination problems
are open.

® They are everywhere.
Consider this part of
code from a device
driver:

while (Cx > d)
dox :=Ax+d

q=r;
1 while (h « +3-

p=r=b+(2* PTHRESH);

if(r>=t)p=r=t; /* too short to care about */

else {
while (((cmp(aTHX_ *(p-1), *p) > @) == sense) &&
W =2)>d) {}
iflp<=a{
/* b through r is a (long) run.
** Extend it as far as possible. */
p=a=r;
while (((p += 2) < t) &
((cmp(aTHX_ *(p-1), *p) > @) == sense)) q = p;
r=p=gq+2; /* no simple pairs, no after-run */
1
1
if (@>b) { /* run of greater than 2 at b */
gptr *savep = p;
p=g+=2;

/* pick up singleton, if possible */
if ((p=1t) &

((t + 1) == last) &
(CempCaTHX_ ~(p 1), *p) > @) = sense))
savep = r = p = q = last;

p2 = NEXT(p2) = pZ +(- b), ++runs;

if (sense)

while (b < --p) {
const gptr c = *b;
*bet = *p;
*p =c;

p = savep;

}

while (q < p) { /* simple pairs */
p2 = NEXT(p2) = p2 + 2; ++runs;
const gptr c = *q++;
*(g-1) = *q;
*GH+ = ¢;
q+=2;

}

if (((b = p) == 1) & ((t+1) = last)) {
NEXT(p2) = p2 + 1; ++runs;
b++;

¥
5/14

Importance of Affine While Loops

do {

p=r=>b+(2* PTHRESH);

if(r>=t)p=r=t; /* too short to care about */
else {

while (((cmp(aTHX_ *(p-1), *p) > @) == sense) &&
. W =2)>d) {}
e Simplest type of e €
. /* b through r is a (long) run.
program for WhICh ;*:;t:nf‘it as far as possible. */

while (((p += 2) < t) &
((cmp(aTHX_ *(p-1), *p) > @) == sense)) q = p;
-p=q+2; /* no simple pairs, no after-run */

termination problems
are open.

° They ag ' g

H
p singleton, if possible */
t) &

/* run of greater than 2 at b */

Consider g .
*(p-1), *p) > 0) ==
code from a S) @ = sensed

. i XT(PZ) = P2+ (p - b); ++runs;
. A se)
driver: y 22 o < -0 ¢
§' const gptr c = *b;
® Terminator o

ep;

/* simple pairs */
) = p2 + 2; ++runs;

while (Cx >
dox:=A

5/14

Affine Loops & Linear Recurrence Sequences
A Linear Recurrence Sequence (LRS) u = (u,)72, is a sequence
defined by a recursion of the form

Upyk = a1Upyk—1 + -+ aklp + ak41

for fixed initial values vy, ..., uk.

6/14

Affine Loops & Linear Recurrence Sequences
A Linear Recurrence Sequence (LRS) u = (u,)72, is a sequence
defined by a recursion of the form

Upyk = a1Upyk—1 + -+ aklp + ak41

for fixed initial values vy, ..., uk.
The most famous example of LRS is Fibonacci sequence:

fn:fn—1+fn—27 f1:f2:1

6/14

Affine Loops & Linear Recurrence Sequences
A Linear Recurrence Sequence (LRS) u = (u,)72, is a sequence
defined by a recursion of the form

Upyk = a1Upyk—1 + -+ aklp + ak41

for fixed initial values vy, ..., uk.
The most famous example of LRS is Fibonacci sequence:

fn:fn—1+fn—27 f1:f2:1

Leonardo of Pisa

6/14

Affine Loops & Linear Recurrence Sequences

A Linear Recurrence Sequence (LRS) u = (u,)72, is a sequence
defined by a recursion of the form

Upyk = a1Upyk—1 + -+ aklp + ak41

for fixed initial values vy, ..., uk.
The most famous example of LRS is Fibonacci sequence:

fn:n—1+fn—27 f1:f2:1

itll 1
N w
[L1} 2
| AN

m' m 3

SN \ SN
L) L) 5

Leonardo of Pisa \ !(% L!(% | !ﬂ\b

oMY W Y Y W WY

6/14

Affine Loops & Linear Recurrence Sequences

For a loop

P : while (cx > d) do x := Ax+ b J

it can be readily seen that

e a3)

is a LRS,

7/14

Affine Loops & Linear Recurrence Sequences

For a loop

P : while (cx > d) do x := Ax+ b J

it can be readily seen that

e a3)

is a LRS, and P is non-terminating over x iff u, > 0 for all n > 0.

7/14

Affine Loops & Linear Recurrence Sequences

For a loop

P : while (cx > d) do x := Ax+ b J

it can be readily seen that

e a3)

is a LRS, and P is non-terminating over x iff u, > 0 for all n > 0.

For a fixed initial value x = xq, deciding positivity of u = (up),
known as Positivity problem is widely believed to be a hard

problem

7/14

Affine Loops & Linear Recurrence Sequences

For a loop

P : while (cx > d) do x := Ax+ b J

it can be readily seen that

e a3)

is a LRS, and P is non-terminating over x iff u, > 0 for all n > 0.

For a fixed initial value x = xq, deciding positivity of u = (up),
known as Positivity problem is widely believed to be a hard
problem as it will entail major breakthroughs in Number Theory.

7/14

Universal Termination
Theorem: Termination over R (Tiwari, 2004)

Termination of Affine programs over R is decidable.

8/14

Universal Termination
Theorem: Termination over R (Tiwari, 2004)

Termination of Affine programs over R is decidable.

Conjecture: Termination over (3 and Z (Tiwari)

Termination of Affine programs over 3 and 7 is decidable.

8/14

Universal Termination
Theorem: Termination over R (Tiwari, 2004)

Termination of Affine programs over R is decidable.

Conjecture: Termination over (3 and Z (Tiwari)

Termination of Affine programs over 3 and 7 is decidable.

Theorem: Termination over Q) (Braverman, 2006)

Termination of Affine programs over @3 is decidable.

8/14

Universal Termination
Theorem: Termination over R (Tiwari, 2004)

Termination of Affine programs over R is decidable.

Conjecture: Termination over (3 and Z (Tiwari)

Termination of Affine programs over 3 and 7 is decidable.

Theorem: Termination over Q) (Braverman, 2006)

Termination of Affine programs over @3 is decidable.

Corollary: Termination over) (Braverman)

Termination of Affine programs over Z is decidable when P is ho-
mogeneous.

8/14

Universal Termination
Theorem: Termination over R (Tiwari, 2004)

Termination of Affine programs over R is decidable.

Conjecture: Termination over (3 and Z (Tiwari)

Termination of Affine programs over QQ and 7Z is decidable.

Theorem: Termination over Q) (Braverman, 2006)

Termination of Affine programs over @3 is decidable.

Corollary: Termination over) (Braverman)

Termination of Affine programs over Z is decidable when P is ho-
mogeneous.

Theorem: Termination over Z (Ouaknine, Pinto, Worrell, 2015)

Termination of Affine programs over Z is decidable when the update
matrix A is diagonalisable.

8/14

Termination over Z

Braverman conjectured to be linked to Positivity, and, therefore, to
be hard to decide!

9/14

Termination over Z

Braverman conjectured to be linked to Positivity, and, therefore, to
be hard to decide! But we came up with a solution to bypass hard
initial values!

9/14

Termination over Z

Braverman conjectured to be linked to Positivity, and, therefore, to
be hard to decide! But we came up with a solution to bypass hard
initial values!

Termination of Affine programs over Z is decidable. J

9/14

Termination over Z

Braverman conjectured to be linked to Positivity, and, therefore, to
be hard to decide! But we came up with a solution to bypass hard
initial values!

Termination of Affine programs over Z is decidable. J

Key Tools (simplified).

® Masser: Given complex numbers 1, ...,7vs of modulus 1, the
group {(n1,...,ns) € Z° : y{* -+ -8 = 1} has a basis of
bounded size.

9/14

Termination over Z

Braverman conjectured to be linked to Positivity, and, therefore, to
be hard to decide! But we came up with a solution to bypass hard
initial values!

Termination of Affine programs over Z is decidable.

Key Tools (simplified).

® Masser: Given complex numbers 1, ...,7vs of modulus 1, the
group {(n1,...,ns) € Z° : y{* -+ -8 = 1} has a basis of
bounded size.

e Kachyian & Porkolab: It is decidable whether convex
semi-algebraic set C C RY contains an integer point.

9/14

Termination over Z

Braverman conjectured to be linked to Positivity, and, therefore, to
be hard to decide! But we came up with a solution to bypass hard
initial values!

Termination of Affine programs over Z is decidable.

Key Tools (simplified).

® Masser: Given complex numbers 7, ...,7s of modulus 1, the
group {(n1,...,ns) € Z° : y{* -+ -8 = 1} has a basis of
bounded size.

e Kachyian & Porkolab: It is decidable whether convex
semi-algebraic set C C RY contains an integer point.

e Khinchine: There exists W € N s.t. any convex set C C R4
of width at least W contains an integer point.

O]

9/14

Finding Non-terminating Integer Points

Proof Sketch.
® The sets of non-terminating IV’s A/ and potentially

non-terminating IV’s P (hard instance of Positivity) can be
determined by analysing dominant eigenspace.

10/14

Finding Non-terminating Integer Points

Proof Sketch.
® The sets of non-terminating IV’s A/ and potentially

non-terminating IV’s P (hard instance of Positivity) can be
determined by analysing dominant eigenspace.

e Using Masser, we show A" and P UAN are convex
semi-algebraic subsets of RY.

10/14

Finding Non-terminating Integer Points

Proof Sketch.
® The sets of non-terminating IV’s A/ and potentially

non-terminating IV’s P (hard instance of Positivity) can be
determined by analysing dominant eigenspace.

e Using Masser, we show A" and P UAN are convex
semi-algebraic subsets of RY.

e Using Kachyian & Porkolab, we can decide
NE=NNZI=0,PL=PNZ=10.

10/14

Finding Non-terminating Integer Points

Proof Sketch.

® The sets of non-terminating IV’s A/ and potentially
non-terminating IV’s P (hard instance of Positivity) can be
determined by analysing dominant eigenspace.

e Using Masser, we show A" and P UAN are convex
semi-algebraic subsets of RY.

e Using Kachyian & Porkolab, we can decide
NE=NNZI=0,PL=PNZ=0.

There are 3 possible scenarios:

10/14

Finding Non-terminating Integer Points

Proof Sketch.

® The sets of non-terminating IV’s A/ and potentially
non-terminating IV’s P (hard instance of Positivity) can be
determined by analysing dominant eigenspace.

e Using Masser, we show A" and P UAN are convex
semi-algebraic subsets of RY.

e Using Kachyian & Porkolab, we can decide
NE=NNZI=0,PL=PNZ=0.

There are 3 possible scenarios:

o N% =() =P~

10/14

Finding Non-terminating Integer Points

Proof Sketch.
® The sets of non-terminating IV’s A/ and potentially

non-terminating IV’s P (hard instance of Positivity) can be
determined by analysing dominant eigenspace.

e Using Masser, we show A" and P UAN are convex
semi-algebraic subsets of RY.

e Using Kachyian & Porkolab, we can decide
NE=NNZI=0,PL=PNZ=0.

There are 3 possible scenarios:

* N2 = () =P% = P is terminating.

10/14

Finding Non-terminating Integer Points

Proof Sketch.
® The sets of non-terminating IV’s A/ and potentially
non-terminating IV’s P (hard instance of Positivity) can be
determined by analysing dominant eigenspace.
e Using Masser, we show A" and P UAN are convex
semi-algebraic subsets of RY.
e Using Kachyian & Porkolab, we can decide
NE=NNZI=0,PL=PNZ=0.
There are 3 possible scenarios:
* N2 = () =P% = P is terminating.
o NZ 40

10/14

Finding Non-terminating Integer Points

Proof Sketch.
® The sets of non-terminating IV’s A/ and potentially

non-terminating IV’s P (hard instance of Positivity) can be
determined by analysing dominant eigenspace.

e Using Masser, we show A" and P UAN are convex
semi-algebraic subsets of RY.

e Using Kachyian & Porkolab, we can decide
NE=NNZI=0,PL=PNZ=0.

There are 3 possible scenarios:
* N2 = () =P% = P is terminating.
® N7% = () = P is non-terminating.

10/14

Finding Non-terminating Integer Points

Proof Sketch.
® The sets of non-terminating IV’s A/ and potentially
non-terminating IV’s P (hard instance of Positivity) can be
determined by analysing dominant eigenspace.
e Using Masser, we show A" and P UAN are convex
semi-algebraic subsets of RY.
e Using Kachyian & Porkolab, we can decide
NE=NNZI=0,PL=PNZ=0.
There are 3 possible scenarios:
* N2 = () =P% = P is terminating.
® N% = () = P is non-terminating.
o NZ = +PpEL

10/14

Finding Non-terminating Integer Points

Proof Sketch.
® The sets of non-terminating IV’s A/ and potentially
non-terminating IV’s P (hard instance of Positivity) can be
determined by analysing dominant eigenspace.
e Using Masser, we show A" and P UAN are convex
semi-algebraic subsets of RY.
e Using Kachyian & Porkolab, we can decide
NE=NNZI=0,PL=PNZ=0.
There are 3 possible scenarios:
* N2 = () =P% = P is terminating.
® N% = () = P is non-terminating.
e N% = () #P% = starting from a potentially NT IV x,

10/14

Finding Non-terminating Integer Points
Proof Sketch.
® The sets of non-terminating IV’s A/ and potentially
non-terminating IV’s P (hard instance of Positivity) can be
determined by analysing dominant eigenspace.
e Using Masser, we show A" and P UAN are convex
semi-algebraic subsets of RY.
e Using Kachyian & Porkolab, we can decide
NE=NNZI=0,PL=PNZ=0.
There are 3 possible scenarios:
* N2 = () =P% = P is terminating.
® N% = () = P is non-terminating.
e N% = () #P% = starting from a potentially NT IV x,
o For n € N large enough, any interior point of
polygon(x, ..., f"(x)) is non-terminating

10/14

Finding Non-terminating Integer Points
Proof Sketch.
® The sets of non-terminating IV’s A/ and potentially
non-terminating IV’s P (hard instance of Positivity) can be
determined by analysing dominant eigenspace.
e Using Masser, we show A" and P UAN are convex
semi-algebraic subsets of RY.
e Using Kachyian & Porkolab, we can decide
NE=NNZI=0,PL=PNZ=0.
There are 3 possible scenarios:
* N2 = () =P% = P is terminating.
® N% = () = P is non-terminating.
e N% = () #P% = starting from a potentially NT IV x,
o For n € N large enough, any interior point of
polygon(x, ..., f"(x)) is non-terminating
o Width(polygon(x,...,f"(x))) — cc.

10/14

Finding Non-terminating Integer Points
Proof Sketch.
® The sets of non-terminating IV’s A/ and potentially
non-terminating IV’s P (hard instance of Positivity) can be
determined by analysing dominant eigenspace.
e Using Masser, we show A" and P UAN are convex
semi-algebraic subsets of RY.
e Using Kachyian & Porkolab, we can decide
NE=NNZI=0,PL=PNZ=0.
There are 3 possible scenarios:
* N2 = () =P% = P is terminating.
® N% = () = P is non-terminating.
e N% = () #P% = starting from a potentially NT IV x,
o For n € N large enough, any interior point of
polygon(x, ..., f"(x)) is non-terminating
o Width(polygon(x,...,f"(x))) — cc.

10/14

Finding Non-terminating Integer Points
Proof Sketch.
® The sets of non-terminating IV’s A/ and potentially
non-terminating IV’s P (hard instance of Positivity) can be
determined by analysing dominant eigenspace.
e Using Masser, we show A" and P UAN are convex
semi-algebraic subsets of RY.
e Using Kachyian & Porkolab, we can decide
NE=NNZI=0,PL=PNZ=0.
There are 3 possible scenarios:
* N2 = () =P% = P is terminating.
® N% = () = P is non-terminating.
e N% = () #P% = starting from a potentially NT IV x,
o For n € N large enough, any interior point of
polygon(x, ..., f"(x)) is non-terminating
o Width(polygon(x,...,f"(x))) — cc.

10/14

Finding Non-terminating Integer Points
Proof Sketch.
® The sets of non-terminating IV’s A/ and potentially
non-terminating IV’s P (hard instance of Positivity) can be
determined by analysing dominant eigenspace.
e Using Masser, we show A" and P UAN are convex
semi-algebraic subsets of RY.
e Using Kachyian & Porkolab, we can decide
NE=NNZI=0,PL=PNZ=0.
There are 3 possible scenarios:
* N2 = () =P% = P is terminating.
® N% = () = P is non-terminating.
e N% = () #P% = starting from a potentially NT IV x,
o For n € N large enough, any interior point of
polygon(x, ..., f"(x)) is non-terminating
o Width(polygon(x,...,f"(x))) — cc.

10/14

Finding Non-terminating Integer Points
Proof Sketch.
® The sets of non-terminating IV’s A/ and potentially
non-terminating IV’s P (hard instance of Positivity) can be
determined by analysing dominant eigenspace.
e Using Masser, we show A" and P UAN are convex
semi-algebraic subsets of RY.
e Using Kachyian & Porkolab, we can decide
NE=NNZI=0,PL=PNZ=0.
There are 3 possible scenarios:
* N2 = () =P% = P is terminating.
® N% = () = P is non-terminating.
e N% = () #P% = starting from a potentially NT IV x,
o For n € N large enough, any interior point of
polygon(x, ..., f"(x)) is non-terminating
o Width(polygon(x,...,f"(x))) — cc.

10/14

Finding Non-terminating Integer Points
Proof Sketch.
® The sets of non-terminating IV’s A/ and potentially
non-terminating IV’s P (hard instance of Positivity) can be
determined by analysing dominant eigenspace.
e Using Masser, we show A" and P UAN are convex
semi-algebraic subsets of RY.
e Using Kachyian & Porkolab, we can decide
NE=NNZI=0,PL=PNZ=0.
There are 3 possible scenarios:
* N2 = () =P% = P is terminating.
® N% = () = P is non-terminating.
e N% = () #P% = starting from a potentially NT IV x,
o For n € N large enough, any interior point of
polygon(x, ..., f"(x)) is non-terminating
o Width(polygon(x,...,f"(x))) — cc.

10/14

Finding Non-terminating Integer Points
Proof Sketch.
® The sets of non-terminating IV’s A/ and potentially
non-terminating IV’s P (hard instance of Positivity) can be
determined by analysing dominant eigenspace.
e Using Masser, we show A" and P UAN are convex
semi-algebraic subsets of RY.
e Using Kachyian & Porkolab, we can decide
NE=NNZI=0,PL=PNZ=0.
There are 3 possible scenarios:
* N2 = () =P% = P is terminating.
® N% = () = P is non-terminating.
e N% = () #P% = starting from a potentially NT IV x,
o For n € N large enough, any interior point of
polygon(x, ..., f"(x)) is non-terminating
o Width(polygon(x,...,f"(x))) — cc.
o By Khinchine, for large enough n, polygon(x, ..., f"(x))
contains an integer point. This is point is non-terminating. [

Finding Non-terminating Integer Points
Proof Sketch.
® The sets of non-terminating IV’s A/ and potentially
non-terminating IV’s P (hard instance of Positivity) can be
determined by analysing dominant eigenspace.
e Using Masser, we show A" and P UAN are convex
semi-algebraic subsets of RY.
e Using Kachyian & Porkolab, we can decide
NE=NNZI=0,PL=PNZ=0.
There are 3 possible scenarios:
* N2 = () =P% = P is terminating.
® N% = () = P is non-terminating.
e N% = () #P% = starting from a potentially NT IV x,
o For n € N large enough, any interior point of
polygon(x, ..., f"(x)) is non-terminating
o Width(polygon(x,...,f"(x))) — cc.
o By Khinchine, for large enough n, polygon(x, ..., f"(x))
contains an integer point. This is point is non-terminating. [

10/14

Finding Non-terminating Integer Points
Proof Sketch.
® The sets of non-terminating IV’s A/ and potentially
non-terminating IV’s P (hard instance of Positivity) can be
determined by analysing dominant eigenspace.
e Using Masser, we show A" and P UAN are convex
semi-algebraic subsets of RY.
e Using Kachyian & Porkolab, we can decide
NE=NNZI=0,PL=PNZ=0.
There are 3 possible scenarios:
* N2 = () =P% = P is terminating.
® N% = () = P is non-terminating.
e N% = () #P% = starting from a potentially NT IV x,
o For n € N large enough, any interior point of
polygon(x, ..., f"(x)) is non-terminating
o Width(polygon(x,...,f"(x))) — cc.
o By Khinchine, for large enough n, polygon(x, ..., f"(x))
contains an integer point. This is point is non-terminating. [

10/14

Other methods: Ranking Functions

For a loop

P : while (Bx > b) do x .= Ax + a J

a Ranking Function is a function

p: 79 =7

11/14

Other methods: Ranking Functions

For a loop

P : while (Bx > b) do x .= Ax + a J

a Ranking Function is a function
p: 79 — 7

such that
1. p(x) > 0 for every x that satisfies the loop guard

11/14

Other methods: Ranking Functions

For a loop

P : while (Bx > b) do x .= Ax + a J

a Ranking Function is a function
p: 79 — 7

such that
1. p(x) > 0 for every x that satisfies the loop guard
2. p(Ax + a) < p(x)

11/14

Other methods: Ranking Functions

Example

while (x >0 Ay >0 A z>0) do
oX++,y—— zZ——
oXxX—— y++,z——
oeX——, y——, z++

12/14

Other methods: Ranking Functions

Example
while (x >0 Ay >0 A z>0) do
°X++7y——7z——
'X——7Y++7Z——
.x__7.y__7z++
Solution.

p(x,y,z) = x +y + z is a ranking function for this loop:

12/14

Other methods: Ranking Functions

Example
while (x >0 Ay >0 A z>0) do
.x++)y__7z__
'X——7Y++7Z——
.x__7.y__7z++
Solution.

p(x,y,z) = x +y + z is a ranking function for this loop:
v p(x,y,z) >0, Vp(x,y,z) > (0,0,0),

12/14

Other methods: Ranking Functions

Example
while (x >0 Ay >0 A z>0) do
.x++)y__7z__
'X——7Y++7Z——
.x__7.y__7z++
Solution.

p(x,y,z) = x +y + z is a ranking function for this loop:
v p(x,y,z) >0, Vp(x,y,z) > (0,0,0),
/ p(xy.2) > p(xy 7).

12/14

Ranking Functions: They don't always exist

Example

x1 x1
while (1 0 1)(xz) >1) do {(XQ) :(
X3 X3

13/14

Ranking Functions: They don't always exist

Example
X1 X1 1 1 0\/x1 0
while [(101) x2 |>—1] do {|x |:={0 1 1]{x |- O
X3 X3 0 0 1/\x3 -1
Solution.

This loop has doesn’t have a linear ranking function. O

13/14

Summary

v" We reviewed termination problem for single-path affine while
loops over reals and rationals, and mentioned that they were
proved to be decidable by Tiwari and Braverman resp.

14 /14

Summary

v" We reviewed termination problem for single-path affine while
loops over reals and rationals, and mentioned that they were
proved to be decidable by Tiwari and Braverman resp.

v" We showed that termination problem for single-path affine
while loops over Integers is also decidable settling the 15 year
old open problem.

14 /14

Summary

v" We reviewed termination problem for single-path affine while
loops over reals and rationals, and mentioned that they were
proved to be decidable by Tiwari and Braverman resp.

v" We showed that termination problem for single-path affine
while loops over Integers is also decidable settling the 15 year
old open problem.

v" We mentioned Ranking function as an other method of
deciding termination of single-path affine while loops.

14 /14

Summary

v" We reviewed termination problem for single-path affine while
loops over reals and rationals, and mentioned that they were
proved to be decidable by Tiwari and Braverman resp.

v" We showed that termination problem for single-path affine
while loops over Integers is also decidable settling the 15 year
old open problem.

v" We mentioned Ranking function as an other method of
deciding termination of single-path affine while loops. They
apply to more general non-deterministic loops (constraint
loops).

14 /14

Summary

v" We reviewed termination problem for single-path affine while
loops over reals and rationals, and mentioned that they were
proved to be decidable by Tiwari and Braverman resp.

v" We showed that termination problem for single-path affine
while loops over Integers is also decidable settling the 15 year
old open problem.

v" We mentioned Ranking function as an other method of
deciding termination of single-path affine while loops. They
apply to more general non-deterministic loops (constraint
loops). But don't decide termination even for deterministic
loops.

14 /14

Summary

v" We reviewed termination problem for single-path affine while
loops over reals and rationals, and mentioned that they were
proved to be decidable by Tiwari and Braverman resp.

v" We showed that termination problem for single-path affine
while loops over Integers is also decidable settling the 15 year
old open problem.

v" We mentioned Ranking function as an other method of
deciding termination of single-path affine while loops. They
apply to more general non-deterministic loops (constraint
loops). But don't decide termination even for deterministic
loops.

14 /14

