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Affine Loops
We study programs of the form

P : while (Cx > d ) do x := Ax + b

where A,C ,b,d are matrices of appropriate dimensions.

P is
called Linear or homogeneous whenever b = 0 and d = 0.

• P is Terminating over S ⊆ Rd whenever P terminates over all
x ∈ S .

• P is Non-Terminating (NT) over S ⊆ Rd whenever there exist
x ∈ S such that P doesn’t terminate over S .

Interesting sets of initial values (IV):

• S = {x} (Halting Problem)

• S = Rd (Universal Termination over R)

• S = Qd (Universal Termination over Q)

• S = Zd (Universal Termination over Z)
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Termination over Integers
Example

while

(
(4 1)

(
x1
x2

)
> 0

)
do

{(
x1
x2

)
:=

(
−2 4
4 0

)(
x1
x2

)}

Solution.
This loop has eigenvalues e1 = −1−

√
17, e2 = −1 +

√
17 with

eigenvectors v1 = (−1−
√

17, 4), v2 = (−1 +
√

17, 4). Note that

• e1 < 0 < e2
• |e1| > |e2|

For every x ∈ R2, there exist a1, a2 ∈ R s.t. x = a1v1 + a2v2.

xn = a1e
n
1v1 + a2e

n
2v2

only initial values which are multiple of v2 are non-terminating.
Therefore

• Non-terminating over R.

• Terminating over Q and Z.
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Termination over Integers

Example

while (x > 0) do x := −5x + 2

Solution.
The update function f (x) = −5x + 2 is oscillating for all IV’s
except for x = 1/3 which is its fixed point. Therefore, the only IV
for which this loop is non-terminating is x = 1/3.

• Non-terminating over Q and R.

• Terminating over Z.

Terminating over R ⇒ Terminating over Q ⇒ Terminating over Z

4 / 14



Termination over Integers

Example

while (x > 0) do x := −5x + 2

Solution.
The update function f (x) = −5x + 2 is oscillating for all IV’s
except for x = 1/3 which is its fixed point.

Therefore, the only IV
for which this loop is non-terminating is x = 1/3.

• Non-terminating over Q and R.

• Terminating over Z.

Terminating over R ⇒ Terminating over Q ⇒ Terminating over Z

4 / 14



Termination over Integers

Example

while (x > 0) do x := −5x + 2

Solution.
The update function f (x) = −5x + 2 is oscillating for all IV’s
except for x = 1/3 which is its fixed point. Therefore, the only IV
for which this loop is non-terminating is x = 1/3.

• Non-terminating over Q and R.

• Terminating over Z.

Terminating over R ⇒ Terminating over Q ⇒ Terminating over Z

4 / 14



Termination over Integers

Example

while (x > 0) do x := −5x + 2

Solution.
The update function f (x) = −5x + 2 is oscillating for all IV’s
except for x = 1/3 which is its fixed point. Therefore, the only IV
for which this loop is non-terminating is x = 1/3.

• Non-terminating over Q and R.

• Terminating over Z.

Terminating over R ⇒ Terminating over Q ⇒ Terminating over Z

4 / 14



Termination over Integers

Example

while (x > 0) do x := −5x + 2

Solution.
The update function f (x) = −5x + 2 is oscillating for all IV’s
except for x = 1/3 which is its fixed point. Therefore, the only IV
for which this loop is non-terminating is x = 1/3.

• Non-terminating over Q and R.

• Terminating over Z.

Terminating over R ⇒ Terminating over Q ⇒ Terminating over Z

4 / 14



Termination over Integers

Example

while (x > 0) do x := −5x + 2

Solution.
The update function f (x) = −5x + 2 is oscillating for all IV’s
except for x = 1/3 which is its fixed point. Therefore, the only IV
for which this loop is non-terminating is x = 1/3.

• Non-terminating over Q and R.

• Terminating over Z.

Terminating over R

⇒ Terminating over Q ⇒ Terminating over Z

4 / 14



Termination over Integers

Example

while (x > 0) do x := −5x + 2

Solution.
The update function f (x) = −5x + 2 is oscillating for all IV’s
except for x = 1/3 which is its fixed point. Therefore, the only IV
for which this loop is non-terminating is x = 1/3.

• Non-terminating over Q and R.

• Terminating over Z.

Terminating over R ⇒ Terminating over Q

⇒ Terminating over Z

4 / 14



Termination over Integers

Example

while (x > 0) do x := −5x + 2

Solution.
The update function f (x) = −5x + 2 is oscillating for all IV’s
except for x = 1/3 which is its fixed point. Therefore, the only IV
for which this loop is non-terminating is x = 1/3.

• Non-terminating over Q and R.

• Terminating over Z.

Terminating over R ⇒ Terminating over Q ⇒ Terminating over Z

4 / 14



Importance of Affine While Loops

• Simplest type of
program for which
termination problems
are open.

• They are everywhere.
Consider this part of
code from a device
driver:

• Terminator

while (Cx > d )

do x := Ax + d
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Affine Loops & Linear Recurrence Sequences
A Linear Recurrence Sequence (LRS) u = 〈un〉∞n=1 is a sequence
defined by a recursion of the form

un+k = a1un+k−1 + · · ·+ akun + ak+1

for fixed initial values u1, . . . , uk .

The most famous example of LRS is Fibonacci sequence:

fn = fn−1 + fn−2, f1 = f2 = 1

Leonardo of Pisa
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Affine Loops & Linear Recurrence Sequences

For a loop

P : while (cx > d ) do x := Ax + b

it can be readily seen that

un =
(
c −d

)(A b
0 1

)n (x
1

)
is a LRS,

and P is non-terminating over x iff un > 0 for all n ≥ 0.

For a fixed initial value x = x0, deciding positivity of u = 〈un〉,
known as Positivity problem is widely believed to be a hard
problem as it will entail major breakthroughs in Number Theory.
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Universal Termination
Theorem: Termination over R (Tiwari, 2004)

Termination of Affine programs over R is decidable.

Conjecture: Termination over Q and Z (Tiwari)

Termination of Affine programs over Q and Z is decidable.

Theorem: Termination over Q (Braverman, 2006)

Termination of Affine programs over Q is decidable.

Corollary: Termination over Q (Braverman)

Termination of Affine programs over Z is decidable when P is ho-
mogeneous.

Theorem: Termination over Z (Ouaknine, Pinto, Worrell, 2015)

Termination of Affine programs over Z is decidable when the update
matrix A is diagonalisable.
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Termination over Z
Braverman conjectured to be linked to Positivity, and, therefore, to
be hard to decide!

But we came up with a solution to bypass hard
initial values!
Theorem: Termination over Z (H., Ouaknine, Worrell)

Termination of Affine programs over Z is decidable.

Key Tools (simplified).

• Masser: Given complex numbers γ1, . . . , γs of modulus 1, the
group {(n1, . . . , ns) ∈ Zs : γn11 · · · γnss = 1} has a basis of
bounded size.

• Kachyian & Porkolab: It is decidable whether convex
semi-algebraic set C ⊆ Rd contains an integer point.

• Khinchine: There exists W ∈ N s.t. any convex set C ⊆ Rd

of width at least W contains an integer point.
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Finding Non-terminating Integer Points
Proof Sketch.
• The sets of non-terminating IV’s N and potentially

non-terminating IV’s P (hard instance of Positivity) can be
determined by analysing dominant eigenspace.

• Using Masser, we show N and P ∪N are convex
semi-algebraic subsets of Rd .
• Using Kachyian & Porkolab, we can decide
NZ = N ∩ Zd = ∅,PZ = P ∩ Z = ∅.

There are 3 possible scenarios:

• NZ = ∅ = PZ ⇒ P is terminating.
• NZ 6= ∅ ⇒ P is non-terminating.
• NZ = ∅ 6= PZ ⇒ starting from a potentially NT IV x ,

◦ For n ∈ N large enough, any interior point of
polygon(x , . . . , f n(x)) is non-terminating

◦ Width(polygon(x , . . . , f n(x)))→∞.
◦ By Khinchine, for large enough n, polygon(x , . . . , f n(x))

contains an integer point. This is point is non-terminating.

*
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Other methods: Ranking Functions

For a loop

P : while (Bx > b) do x := Ax + a

a Ranking Function is a function

ρ : Zd → Z

such that

1. ρ(x) > 0 for every x that satisfies the loop guard

2. ρ(Ax + a) < ρ(x)
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Other methods: Ranking Functions

Example

while (x > 0 ∧ y > 0 ∧ z > 0) do

• x + +, y −−, z −−
• x −−, y + +, z −−
• x −−, y −−, z + +

Solution.
ρ(x , y , z) = x + y + z is a ranking function for this loop:

X ρ(x , y , z) > 0, ∀ρ(x , y , z) > (0, 0, 0),

X ρ(x , y , z) > ρ(x ′, y ′, z ′).
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Ranking Functions: They don’t always exist

Example

while

(1 0 1)

x1
x2
x3

>−1

 do


x1
x2
x3

:=

1 1 0
0 1 1
0 0 1

x1
x2
x3

−
 0

0
−1



Solution.
This loop has doesn’t have a linear ranking function.
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Summary

X We reviewed termination problem for single-path affine while
loops over reals and rationals, and mentioned that they were
proved to be decidable by Tiwari and Braverman resp.

X We showed that termination problem for single-path affine
while loops over Integers is also decidable settling the 15 year
old open problem.

X We mentioned Ranking function as an other method of
deciding termination of single-path affine while loops. They
apply to more general non-deterministic loops (constraint
loops). But don’t decide termination even for deterministic
loops.

Thank You!
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