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Example : mass-spring-damper system

m

kb

u(t)

z

Model with external input u(t)

→ Linear time invariant system

X ′ = AX + Bu

with some constraints on u.

State : X = z ∈ R

Equation of motion :

mz ′′ = −kz − bz ′ + mg + u

→ Affine but not first order

State : X = (z, z ′,1) ∈ R3

Equation of motion :z
z ′

1

′ =
 z ′

− k
m z − b

m z ′ + g + 1
m u

0
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Linear dynamical systems

Discrete case

x(n + 1) = Ax(n)

I biology,
I software verification,
I probabilistic model checking,
I combinatorics,
I ....

Continuous case

x ′(t) = Ax(t)

I biology,
I physics,
I probabilistic model checking,
I electrical circuits,
I ....

Typical questions

I reachability
I safety

I controllability

I optimal control
I feedback control
I ...
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The problem

LTI-REACHABILITY

I a source s ∈ Qd ,
I a target t ∈ Qd ,
I a transition matrix A ∈ Qd×d ,
I a set of controls U ⊆ Rd ,

decide if ∃T ∈ N, u0, . . . ,uT−1 ∈ U such that xT = t where

x0 = s, xn+1 = Axn + un.

s t

Ax0

x1 = Ax0 + u0

u0

Ax1

x2 = Ax1 + u1
u1

Ax2

u2

4 / 12



The problem

LTI-REACHABILITY

I a source s ∈ Qd ,
I a target t ∈ Qd ,
I a transition matrix A ∈ Qd×d ,
I a set of controls U ⊆ Rd ,

decide if ∃T ∈ N, u0, . . . ,uT−1 ∈ U such that xT = t where

x0 = s, xn+1 = Axn + un.

x0 = s t

Ax0

x1 = Ax0 + u0

u0

Ax1

x2 = Ax1 + u1
u1

Ax2

u2

4 / 12



The problem

LTI-REACHABILITY

I a source s ∈ Qd ,
I a target t ∈ Qd ,
I a transition matrix A ∈ Qd×d ,
I a set of controls U ⊆ Rd ,

decide if ∃T ∈ N, u0, . . . ,uT−1 ∈ U such that xT = t where

x0 = s, xn+1 = Axn + un.

x0 = s t

Ax0

x1 = Ax0 + u0

u0

Ax1

x2 = Ax1 + u1
u1

Ax2

u2

4 / 12



The problem

LTI-REACHABILITY

I a source s ∈ Qd ,
I a target t ∈ Qd ,
I a transition matrix A ∈ Qd×d ,
I a set of controls U ⊆ Rd ,

decide if ∃T ∈ N, u0, . . . ,uT−1 ∈ U such that xT = t where

x0 = s, xn+1 = Axn + un.

x0 = s t

Ax0

x1 = Ax0 + u0

u0

Ax1

x2 = Ax1 + u1
u1

Ax2

u2

4 / 12



The problem

LTI-REACHABILITY

I a source s ∈ Qd ,
I a target t ∈ Qd ,
I a transition matrix A ∈ Qd×d ,
I a set of controls U ⊆ Rd ,

decide if ∃T ∈ N, u0, . . . ,uT−1 ∈ U such that xT = t where

x0 = s, xn+1 = Axn + un.

x0 = s t

Ax0

x1 = Ax0 + u0

u0

Ax1

x2 = Ax1 + u1
u1

Ax2

u2

4 / 12



The problem

LTI-REACHABILITY

I a source s ∈ Qd ,
I a target t ∈ Qd ,
I a transition matrix A ∈ Qd×d ,
I a set of controls U ⊆ Rd ,

decide if ∃T ∈ N, u0, . . . ,uT−1 ∈ U such that xT = t where

x0 = s, xn+1 = Axn + un.

x0 = s t

Ax0

x1 = Ax0 + u0

u0

Ax1

x2 = Ax1 + u1
u1

Ax2

u2

4 / 12



The problem

LTI-REACHABILITY

I a source s ∈ Qd ,
I a target t ∈ Qd ,
I a transition matrix A ∈ Qd×d ,
I a set of controls U ⊆ Rd ,

decide if ∃T ∈ N, u0, . . . ,uT−1 ∈ U such that xT = t where

x0 = s, xn+1 = Axn + un.

x0 = s t

Ax0

x1 = Ax0 + u0

u0

Ax1

x2 = Ax1 + u1
u1

Ax2

u2

4 / 12



The problem

LTI-REACHABILITY

I a source s ∈ Qd ,
I a target t ∈ Qd ,
I a transition matrix A ∈ Qd×d ,
I a set of controls U ⊆ Rd ,

decide if ∃T ∈ N, u0, . . . ,uT−1 ∈ U such that xT = t where

x0 = s, xn+1 = Axn + un.

x0 = s x3 = t

Ax0

x1 = Ax0 + u0

u0

Ax1

x2 = Ax1 + u1
u1

Ax2

u2

4 / 12



Existing work

LTI-REACHABILITY

I a source s ∈ Qd ,
I a target t ∈ Qd ,
I a transition matrix A ∈ Qd×d ,
I a set of controls U ⊆ Rd ,

decide if ∃T ∈ N, u0, . . . ,uT−1 ∈ U such that xT = t where

x0 = s, xn+1 = Axn + un.

Theorem (Lipton and Kannan, 1986)

LTI-REACHABILITY is decidable if U is an affine subspace of Rd .

Almost no exact results for other classes of U in particular when U is
bounded (which is the most natural case).
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Our results : hardness

Study the impact of the control set on the hardness of reachability

Theorem
LTI-REACHABILITY is
I undecidable if U is a finite union of affine subspaces.

I Skolem-hard if U = {0} ∪ V where V is an affine subspace
I Positivity-hard if U is a convex polytope

Given s ∈ Qd and A ∈ Qd×d :
I Skolem problem : decide if ∃T ∈ N such that (AT s)1 = 0,

I Positivity problem : decide if (AT s)1 > 0 for all T ∈ N.

Why is this a hardness result ?

Decidability of Skolen and Positivity has been open for 70 years !

Since we cannot solve Skolem/Positivity, we need some strong
assumptions for decidability.

6 / 12



Our results : hardness

Study the impact of the control set on the hardness of reachability

Theorem
LTI-REACHABILITY is
I undecidable if U is a finite union of affine subspaces.

I Skolem-hard if U = {0} ∪ V where V is an affine subspace
I Positivity-hard if U is a convex polytope

Given s ∈ Qd and A ∈ Qd×d :
I Skolem problem : decide if ∃T ∈ N such that (AT s)1 = 0,

I Positivity problem : decide if (AT s)1 > 0 for all T ∈ N.

Why is this a hardness result ?

Decidability of Skolen and Positivity has been open for 70 years !

Since we cannot solve Skolem/Positivity, we need some strong
assumptions for decidability.

6 / 12



Our results : hardness

Study the impact of the control set on the hardness of reachability

Theorem
LTI-REACHABILITY is
I undecidable if U is a finite union of affine subspaces.
I Skolem-hard if U = {0} ∪ V where V is an affine subspace

I Positivity-hard if U is a convex polytope

Given s ∈ Qd and A ∈ Qd×d :
I Skolem problem : decide if ∃T ∈ N such that (AT s)1 = 0,

I Positivity problem : decide if (AT s)1 > 0 for all T ∈ N.

Why is this a hardness result ?

Decidability of Skolen and Positivity has been open for 70 years !

Since we cannot solve Skolem/Positivity, we need some strong
assumptions for decidability.

6 / 12



Our results : hardness

Study the impact of the control set on the hardness of reachability

Theorem
LTI-REACHABILITY is
I undecidable if U is a finite union of affine subspaces.
I Skolem-hard if U = {0} ∪ V where V is an affine subspace
I Positivity-hard if U is a convex polytope

Given s ∈ Qd and A ∈ Qd×d :
I Skolem problem : decide if ∃T ∈ N such that (AT s)1 = 0,
I Positivity problem : decide if (AT s)1 > 0 for all T ∈ N.

Why is this a hardness result ?

Decidability of Skolen and Positivity has been open for 70 years !

Since we cannot solve Skolem/Positivity, we need some strong
assumptions for decidability.

6 / 12



Our results : hardness

Study the impact of the control set on the hardness of reachability

Theorem
LTI-REACHABILITY is
I undecidable if U is a finite union of affine subspaces.
I Skolem-hard if U = {0} ∪ V where V is an affine subspace
I Positivity-hard if U is a convex polytope

Given s ∈ Qd and A ∈ Qd×d :
I Skolem problem : decide if ∃T ∈ N such that (AT s)1 = 0,
I Positivity problem : decide if (AT s)1 > 0 for all T ∈ N.

Why is this a hardness result ?

Decidability of Skolen and Positivity has been open for 70 years !

Since we cannot solve Skolem/Positivity, we need some strong
assumptions for decidability.

6 / 12



Our results : hardness

Study the impact of the control set on the hardness of reachability

Theorem
LTI-REACHABILITY is
I undecidable if U is a finite union of affine subspaces.
I Skolem-hard if U = {0} ∪ V where V is an affine subspace
I Positivity-hard if U is a convex polytope

Given s ∈ Qd and A ∈ Qd×d :
I Skolem problem : decide if ∃T ∈ N such that (AT s)1 = 0,
I Positivity problem : decide if (AT s)1 > 0 for all T ∈ N.

Why is this a hardness result ?

Decidability of Skolen and Positivity has been open for 70 years !

Since we cannot solve Skolem/Positivity, we need some strong
assumptions for decidability.

6 / 12



Our results : a positive result

A LTI system (s,A, t ,U) is simple if s = 0 and

I U is a bounded polytope that contains 0 in its (relative) interior,
I the spectral radius of A is less than 1 (stability),
I some positive power of A has exclusively real spectrum.

Theorem
LTI-REACHABILITY is decidable for simple systems.

Remark : in fact we can decide reachability to a convex polytope Q.

Reach set

t

Q

Assumptions imply that the
reachable set is an open
convex bounded set,

but
not always a polytope !
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Why is this problem hard

The reachable set A∗(U) can have infinitely many faces.

A∗(U)

A =

[1
3 0
0 2

3

]

U

(−2,−1) (0,−1)

(0,1) (2,1)
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Why is this problem hard

The reachable set A∗(U) can have faces of lower dimension : the
"top" extreme point does not belong to any facet.

A∗(U)

A =

[2
3 0
0 1

3

]

U

(−1,0)

(0,2)

(1,0)

9 / 12



Why is this problem hard

Approach : two semi-decision procedures
I reachability : under-approximations of the reachable set
I non-reachability : separating hyperplanes

A∗(U)

Q
H

Q

H
Q

H

Further difficulty : a separating hyperplane may not be supported by a
facet of either A∗(U) or Q.
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Why is this problem hard

V

(−2,0) (0,0)

(0,2)

B =

[2
3

1
3

1
3 0

]

B∗(V )

Even more difficulty : B∗(V ) has two extreme points that do not belong
to any facet and have rational coordinates, but whose (unique)
separating hyperplane requires the use of algebraic irrationals

Theorem (Non-reachable instances)

There is a separating hyperplane with algebraic coefficients.
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Conclusion and future work

Exact reachability of xn+1 = Axn + un :

I decidability crucially depends on the shape of the control set
I even with convex bounded inputs, the problem is very hard

(Skolem/Positivity, open for 70 years)
I we can recover decidability using strong spectral assumptions

Open questions :
I for convex bounded inputs, is it Positivity-easy?
I weaken spectral assumptions? Minimal difficult example :

A =
1
2

(
cos θ − sin θ
sin θ cos θ

)
, U = [0,1]× {0}.

Decidability of t 6
∞∑

n=0

max(0,2−n cos(nθ)) unknown.

Work in progress : continuous case x ′(t) = Ax(t) + u(t) Details
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)
, U = [0,1]× {0}.

Decidability of t 6
∞∑

n=0

max(0,2−n cos(nθ)) unknown.

Work in progress : continuous case x ′(t) = Ax(t) + u(t) Details
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Continuous control

Rinse and repeat :
x ′(t) = Ax(t) + u(t)

where u : R→ U measurable.

Problems : reachability, safety, controllability, ...

It looks similar but
I basic questions look harder :

x(t) = eAtx0 +

∫ t

0
e−Asu(s) ds.

I harder questions look easier :

linear + continuous = hard to encode problems
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Continuous control : preliminary results

Theorem (Joint work with Mohan Dantam, preliminary)

Point-to-point continuous control is
I decidable in dimension 2,
I conditionally decidable with real eigen values,
I conditionally decidable in bounded time,
I Skolem/Positivity hard for point-to-set.
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